Giải bài 9.7 trang 90 SGK Toán 8 tập 2 - Kết nối tri thức >
Cho AM, BN, CP là các đường trung tuyến của tam giác ABC
Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Cho AM, BN, CP là các đường trung tuyến của tam giác ABC. Cho A'M', B'N', C'P' là các đường trung tuyến của tam giác A'B'C'. Biết rằng ΔA’B’C’ ∽ ΔABC
Chứng minh rằng \(\frac{{A'M'}}{{AM}} = \frac{{B'N'}}{{BN}} = \frac{{C'P'}}{{CP}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Chứng minh các tam giác đồng dạng và suy ra các tỉ số đồng dạng để chứng minh.
Lời giải chi tiết
Vì ΔA’B’C’ ∽ ΔABC
=> ΔA’M’B’ ∽ ΔAMB
=> \(\frac{{A'M'}}{{AM}} = \frac{{A'B'}}{{AB}}(1)\) (1)
Vì \(\Delta A'B'C'\) ∽ ΔABC
=> Vì ΔA′B′N′ ∽ ΔABN
=> \(\frac{{B'N'}}{{BN}} = \frac{{A'B'}}{{AB}}\) (2)
Từ (1) và (2) => \(\frac{{A'M'}}{{AM}} = \frac{{B'N'}}{{BN}}\)(3)
Vì ΔA’B’C’ ∽ ΔABC
=> Vì ΔA’C’P’ ∽ ΔACP
=> \(\frac{{C'P'}}{{CP}} = \frac{{A'C'}}{{AC}}\) (4)
Vì ΔA′B′C′ ∽ ΔABC
=> ΔA′M′C′ ∽ ΔAMC
=> \(\frac{{A'M'}}{{AM}} = \frac{{A'C'}}{{AC}}\) (5)
Từ (4) và (5) => \(\frac{{C'P'}}{{CP}} = \frac{{A'M'}}{{AM}}\) (6)
Từ (3) và (6) => \(\frac{{A'M'}}{{AM}} = \frac{{B'N'}}{{BN}} = \frac{{C'P'}}{{CP}}\)
- Giải bài 9.8 trang 90 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 9.9 trang 90 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 9.10 trang 90 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 9.6 trang 90 SGK Toán 8 tập 2 - Kết nối tri thức
- Giải bài 9.5 trang 90 SGK Toán 8 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải dự án 2 trang 112 SGK Toán 8 tập 1
- Lý thuyết Hình chóp tứ giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình chóp tam giác đều SGK Toán 8 - Kết nối tri thức
- Lý thuyết Hình đồng dạng SGK Toán 8 - Kết nối tri thức
- Lý thuyết Các trường hợp đồng dạng của hai tam giác vuông SGK Toán 8 - Kết nối tri thức