Giải bài 7 trang 67 vở thực hành Toán 6


Bài 7. Sử dungk tính chất chia hết của một tổng các số nguyên dương (tương tự như đối với số tự nhiên) để giải bài toán sau: Tìm số nguyên x \(\left( {x \ne - 1} \right)\) sao cho 2x – 5 chia hết cho x + 1 .

Đề bài

Bài 7. Sử dungk tính chất chia hết của một tổng các số nguyên dương (tương tự như đối với số tự nhiên) để giải bài toán sau:

Tìm số nguyên x \(\left( {x \ne  - 1} \right)\) sao cho 2x – 5 chia hết cho x + 1 .

Phương pháp giải - Xem chi tiết

Phân tích 2x – 5 thành các số chia hết cho x+1.

Lời giải chi tiết

Ta có thể phân tích 2x – 5 như sau:

2x – 5 = 2x + 2 – 7 = 2 (x+1) – 7

Vì 2(x+1) chia hết cho x+1 nên để 2x – 5 chia hết cho x+1, tức là 2(x+1) – 7 chia hết cho x+1 thì ta cần có 7 chia hết cho x+1.

Bài toán quy về việc tìm x để x+1 là ước của 7.

Ta đã biết 7 có bốn ước là 1; -1; 7; -7 nên xảy ra các trường hợp sau:

  • x+1=1 suy ra x = 0;
  • x+1= -1 suy ra x = -2;
  • x+1=7 suy ra x=6;
  • x+1=-7 suy ra x = -8.

Vậy \(x \in \left\{ { - 8; - 2;0;6} \right\}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 6 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K13 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí