Giải bài 6 trang 35 sách bài tập toán 9 - Cánh diều tập 1>
Chứng minh: a) \(\sqrt 5 - \sqrt 7 < \sqrt 6 - 2\) b) \(\sqrt {10} + \sqrt {11} - \sqrt 7 < \sqrt {10} + \sqrt {13} - \sqrt 5 \) c) \({3.1024^2} > {2^{21}}\)
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Chứng minh:
a) \(\sqrt 5 - \sqrt 7 < \sqrt 6 - 2\)
b) \(\sqrt {10} + \sqrt {11} - \sqrt 7 < \sqrt {10} + \sqrt {13} - \sqrt 5 \)
c) \({3.1024^2} > {2^{21}}\)
Phương pháp giải - Xem chi tiết
a) + b) Áp dụng nếu \(a < b,c > d\) thì \(a - c < b - d\).
c) Biến đổi \({2^{21}} = {2.2^{20}} = 2.{\left( {{2^{10}}} \right)^2} = {2.1024^2}\) rồi so sánh với \({3.1024^2}\).
Lời giải chi tiết
a) Ta có \(\sqrt 5 < \sqrt 6 \) và \(\sqrt 7 > 2\) nên \(\sqrt 5 - \sqrt 7 < \sqrt 6 - 2\).
b) Ta có \(\sqrt {11} < \sqrt {13} \) và \(\sqrt 7 > \sqrt 5 \) nên \(\sqrt {11} - \sqrt 7 < \sqrt {13} - \sqrt 5 \) suy ra \(\sqrt {10} + \sqrt {11} - \sqrt 7 < \sqrt {10} + \sqrt {13} - \sqrt 5 \).
c) Ta có \({2^{21}} = {2.2^{20}} = 2.{\left( {{2^{10}}} \right)^2} = {2.1024^2}\) nên \({3.1024^2} > {2.1024^2}\) (do 3 > 2).
Do đó \({3.1024^2} > {2^{21}}\)
- Giải bài 7 trang 36 sách bài tập toán 9 - Cánh diều tập 1
- Giải bài 8 trang 36 sách bài tập toán 9 - Cánh diều tập 1
- Giải bài 9 trang 36 sách bài tập toán 9 - Cánh diều tập 1
- Giải bài 10 trang 37 sách bài tập toán 9 - Cánh diều tập 1
- Giải bài 11 trang 37 sách bài tập toán 9 - Cánh diều tập 1
>> Xem thêm
Các bài khác cùng chuyên mục