Giải bài 5 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2>
Tính đạo hàm cấp hai của các hàm số sau:
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = x\sin 2x\);
b) \(y = {\cos ^2}x\);
c) \(y = {x^4} - 3{x^3} + {x^2} - 1\).
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về đạo hàm cấp hai của hàm số: Cho hàm số \(y = f\left( x \right)\) có đạo hàm tại mọi \(x \in \left( {a;b} \right)\) thì ta có hàm số \(y' = f'\left( x \right)\) xác định trên \(\left( {a;b} \right)\). Nếu hàm số \(y' = f'\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y'\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x và kí hiệu là \(y''\) hoặc \(f''\left( x \right)\).
+ Sử dụng một số quy tắc tính đạo hàm:
a) \(\left( {uv} \right)' = u'v + uv'\), \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right)\), \(x' = 1\), \(\left( {u + v} \right)' = u' + v'\), \(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\)
b) \(\left\{ {{{\left[ {u\left( x \right)} \right]}^\alpha }} \right\}' = \alpha {\left[ {u\left( x \right)} \right]^{\alpha - 1}}\left[ {u\left( x \right)} \right]';\left( {\cos x} \right)' = - \sin x\), \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right)\)
c) \(\left( {u \pm v} \right)' = u' \pm v'\), \(\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha - 1}}\left( {x > 0} \right)\)
Lời giải chi tiết
a) \(y' \) \( = \left( {x\sin 2x} \right)' \) \( = x'\sin 2x + x\left( {\sin 2x} \right)' \) \( = \sin 2x + 2x\cos 2x\)
\( \Rightarrow y'' \) \( = \left( {\sin 2x + 2x\cos 2x} \right)' \) \( = 2\cos 2x + 2x'\cos 2x + 2x\left( {\cos 2x} \right)'\)
\( \) \( = 2\cos 2x + 2\cos 2x - 4x\sin 2x \) \( = 4\cos 2x - 4x\sin 2x\)
b) \(y' \) \( = \left( {{{\cos }^2}x} \right)' \) \( = 2\left( {\cos x} \right)'\cos x \) \( = - 2\cos x\sin x \) \( = - \sin 2x\)
\( \Rightarrow y'' \) \( = \left( { - \sin 2x} \right)' \) \( = - 2\cos 2x\)
c) \(y' \) \( = \left( {{x^4} - 3{x^3} + {x^2} - 1} \right)' \) \( = 4{x^3} - 9{x^2} + 2x\)\( \Rightarrow y'' \) \( = \left( {4{x^3} - 9{x^2} + 2x} \right)' \) \( = 12{x^2} - 18x + 2\)
- Giải bài 6 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
- Giải bài 7 trang 44 sách bài tập toán 11 - Chân trời sáng tạo tập 2
- Giải bài 8 trang 44 sách bài tập toán 11 - Chân trời sáng tạo tập 2
- Giải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
- Giải bài 3 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1