Giải Bài 5 trang 26 SGK Toán 8 tập 2 – Chân trời sáng tạo


Cho hai hàm số bậc nhất (y = 2mx - 5) và (y = 2x + 1). Với giá trị nào của (m) thì đồ thị của hai hàm số đã cho là: a) Hai đường thẳng song song với nhau? b) Hai đường thẳng cắt nhau?

Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho hai hàm số bậc nhất \(y = 2mx - 5\) và \(y = 2x + 1\).

Với giá trị nào của \(m\) thì đồ thị của hai hàm số đã cho là:

a) Hai đường thẳng song song với nhau?

b) Hai đường thẳng cắt nhau?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Cho hai đường thẳng \(d:y = ax + b\) và \(d':y = a'x + b'\)

- Hai đường thẳng \(d\) và \(d'\) song song với nhau nếu chúng phân biệt và có hệ số góc bằng nhau hay \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.\).

- Hai đường thẳng \(d\) và \(d'\) cắt nhau nếu chúng có hệ số góc khác nhau hay \(a \ne a'\).

Lời giải chi tiết

a) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) song song với nhau thì \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2m = 2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 2:2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\ - 5 \ne 1\end{array} \right.\left( {tm} \right)\)

Vậy \(m = 1\) thì hai đường thẳng \(y = 2mx - 5\) và \(y = 2x + 1\) song song với nhau.

b) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) cắt nhau thì \(a \ne a' \Rightarrow 2m \ne 2 \Leftrightarrow m \ne 2:2 \Leftrightarrow m \ne 1\). 


Bình chọn:
4.4 trên 12 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí