Giải bài 4 trang 96 sách bài tập toán 11 - Chân trời sáng tạo tập 2>
Cho A và B là hai biến cố độc lập. a) Biết \(P\left( {\overline A } \right) = 0,4\) và \(P\left( B \right) = 0,1\). Hãy tính xác suất của các biến cố AB, \(\overline A B\) và \(\overline A \overline B \).
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho A và B là hai biến cố độc lập.
a) Biết \(P\left( {\overline A } \right) = 0,4\) và \(P\left( B \right) = 0,1\). Hãy tính xác suất của các biến cố AB, \(\overline A B\) và \(\overline {AB} \).
b) Biết \(P\left( A \right) + P\left( B \right) = 0,8\) và \(P\left( {AB} \right) = 0,16\). Hãy tính xác suất của các biến cố B, \(\overline A B\) và \(\overline {AB} \).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về biến cố độc lập: Hai biến cố A và B gọi là độc lập nếu việc xảy ra hay không xảy ra của biến cố này không làm ảnh hưởng tới xác suất xảy ra của biến cố kia. Nếu hai biến cố A và B độc lập thì \(\overline A \) và B, A và \(\overline B \), \(\overline A \) và \(\overline B \) cũng độc lập
Sử dụng quy tắc nhân của hai biến cố độc lập: Nếu hai biến cố A và B độc lập thì \(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\).
Lời giải chi tiết
a) Vì \(P\left( {\overline A } \right) = 0,4 \Rightarrow P\left( A \right) = 1 - 0,4 = 0,6\), \(P\left( B \right) = 0,1 \Rightarrow P\left( {\overline B } \right) = 1 - 0,1 = 0,9\)
Vì A và B là hai biến cố độc lập nên: \(P\left( {AB} \right) = P\left( A \right)P\left( B \right) = 0,6.0,1 = 0,06\),
Vì \(\overline A \) và B là hai biến cố độc lập nên: \(P\left( {\overline A B} \right) = P\left( {\overline A } \right)P\left( B \right) = 0,4.0,1 = 0,04\)
Vì \(\overline A \) và \(\overline B \) là hai biến cố độc lập nên: \(P\left( {\overline {AB} } \right) = P\left( {\overline A } \right)P\left( {\overline B } \right) = 0,4.0,9 = 0,36\)
b) Vì A và B là hai biến cố độc lập nên \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,16\)
Mà \(P\left( A \right) + P\left( B \right) = 0,8\) nên \(P\left( A \right) = P\left( B \right) = 0,4\)
Do đó, \(P\left( {\overline A } \right) = P\left( {\overline B } \right) = 1 - 0,4 = 0,6\)
Vì \(\overline A \) và B là hai biến cố độc lập nên: \(P\left( {\overline A B} \right) = P\left( {\overline A } \right)P\left( B \right) = 0,6.0,4 = 0,24\)
Vì \(\overline A \) và \(\overline B \) là hai biến cố độc lập nên: \(P\left( {\overline {AB} } \right) = P\left( {\overline A } \right)P\left( {\overline B } \right) = 0,6.0,6 = 0,36\)
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 4 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 3 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 2 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1
- Giải bài 1 trang 161 sách bài tập toán 11 - Chân trời sáng tạo tập 1