Giải bài 4 trang 85 sách bài tập toán 9 - Cánh diều tập 2


Vẽ đường tròn (O) ngoại tiếp tam giác MNP trong các trường hợp sau: a) (widehat M,widehat N,widehat P) đều nhọn; b) (widehat M = {90^o}) c) (widehat M > {90^o})

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Cánh diều

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Vẽ đường tròn (O) ngoại tiếp tam giác MNP trong các trường hợp sau:

a) \(\widehat M,\widehat N,\widehat P\) đều nhọn;

b) \(\widehat M = {90^o}\)

c) \(\widehat M > {90^o}\)

Phương pháp giải - Xem chi tiết

Dựa vào đường tròn đi qua 3 đỉnh của tam giác được gọi là đường tròn ngoại tiếp tam giác đó.

Lời giải chi tiết

a) \(\widehat M,\widehat N,\widehat P\) đều nhọn

b) \(\widehat M = {90^o}\)

 

c) \(\widehat M > {90^o}\)

 


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 5 trang 85 sách bài tập toán 9 - Cánh diều tập 2

    Cho tam giác nhọn ABC. Các đường cao BE, CD của tam giác ABC cắt nhau tại K. Tìm tâm đường tròn ngoại tiếp mỗi tam giác sau: a) Tam giác BDE; b) Tam giác DEC c) Tam giác ADE.

  • Giải bài 6 trang 85 sách bài tập toán 9 - Cánh diều tập 2

    Cho tam giác nhọn ABC ((widehat B > widehat C)), phân giác AM. Gọi O, O1, O2 lần lượt là tâm đường tròn ngoại tiếp các tam giác ABC, AMB, AMC. Chứng minh rằng: a) OO1, OO2, O1O2 lần lượt là các đường trung trực của AB, AC, AM; b) Tam giác OO1O2 cân.

  • Giải bài 7 trang 85 sách bài tập toán 9 - Cánh diều tập 2

    Trên đường tròn (O) bán kính R, lấy các điểm A, B, C, D sao cho (sđoversetfrown{AB}={{60}^{o}}); (sđoversetfrown{BC}={{90}^{o}}); (sđoversetfrown{CD}={{120}^{o}}) (Hình 7). a) Xác định tâm và tính theo R bán kính đường tròn ngoại tiếp của các tam giác OAB, OBC, OAD, OCD. b) Gọi I là giao điểm của AC và BD. Tính bán kính đường tròn ngoại tiếp của các tam giác IAB, IBC, IAD, IDC.

  • Giải bài 8 trang 86 sách bài tập toán 9 - Cánh diều tập 2

    Cho tam giác ABC vuông tại A có AB = 6, AC = 8, bán kính đường tròn nội tiếp là r, bán kính đường tròn ngoại tiếp là R. Tính (frac{r}{R}).

  • Giải bài 9 trang 86 sách bài tập toán 9 - Cánh diều tập 2

    Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R. a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC. b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều. c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính (frac{r}{{R'}}).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Cánh diều - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí