Giải bài 4 trang 66 vở thực hành Toán 8>
Chứng minh rằng nếu nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân (H.3.43).
Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Chứng minh rằng nếu nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân (H.3.43).
Phương pháp giải - Xem chi tiết
Dựa vào dấu hiệu nhận biết hình thang cân.
Lời giải chi tiết
Xét tứ giác ABCD đó có hai đường chéo AC = BD, hai cạnh đối AD = BC.
Hai tam giác ABD và BCA có: cạnh chung AB, AC = BD, AD = BC.
Vậy ∆ABD = ∆BCA (c.c.c).
⇒ \({\widehat A_1} = {\widehat B_1}\). (1)
Tương tự, ta có ∆ACD = ∆BDC (c.c.c)
⇒ \({\widehat D_1} = {\widehat C_1}\). (2)
Gọi O là giao của hai đường chéo AC và BD thì \({\widehat O_1} = {\widehat O_2}.\) (hai góc đối đỉnh). (3)
Từ (1), (2), (3), ta có \({\widehat A_1} = {\widehat C_1}\) ⇒ AB // CD ⇒ ABCD là hình thang.
Vậy hình thang ABCD có hai đường chéo bằng nhau nên là hình thang cân.
- Giải bài 5 trang 66 vở thực hành Toán 8
- Giải bài 6 trang 66 vở thực hành Toán 8
- Giải bài 7 trang 67 vở thực hành Toán 8
- Giải bài 8 trang 68 vở thực hành Toán 8
- Giải câu hỏi trắc nghiệm trang 65 vở thực hành Toán 8
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay