Giải bài 4 trang 48 sách bài tập toán 8 - Chân trời sáng tạo tập 2


Cho hình bình hành ABCD có tia phân giác của góc A cắt đường chéo BD tại M và tia phân giác của góc D cắt đường chéo AC tại N. Chứng minh MN//AD.

Đề bài

Cho hình bình hành ABCD có tia phân giác của góc A cắt đường chéo BD tại M và tia phân giác của góc D cắt đường chéo AC tại N. Chứng minh MN//AD.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về tính chất của đường phân giác của tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề đoạn ấy.

Lời giải chi tiết

Gọi O là giao điểm của AC và BD nên \(AC = 2AO,BD = 2DO\)

Vì DN là phân giác của góc ADC trong tam giác ADC nên: \(\frac{{NA}}{{NC}} = \frac{{AD}}{{DC}}\)

Vì AM là phân giác của góc DAB trong tam giác ADB nên: \(\frac{{MD}}{{MB}} = \frac{{AD}}{{AB}} = \frac{{AD}}{{DC}}\)

Do đó, \(\frac{{NA}}{{NC}} = \frac{{MD}}{{MB}}\)

Suy ra: \(\frac{{NA}}{{MD}} = \frac{{NC}}{{MB}} = \frac{{NA + NC}}{{MD + MB}} = \frac{{AC}}{{BD}} = \frac{{AO}}{{DO}}\)

Do đó, \(\frac{{AN}}{{AO}} = \frac{{MD}}{{DO}}\)

Tam giác ADO có: \(\frac{{AN}}{{AO}} = \frac{{MD}}{{DO}}\)  nên MN//AD (định lí Thalès đảo).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí