Giải bài 3 trang 40 Chuyên đề học tập Toán 11 Chân trời sáng tạo


Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) tâm O bán kính R = 9 và cho điểm A khác O.

Đề bài

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) tâm O bán kính R = 9 và cho điểm A khác O. Gọi (C’) là ảnh của (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ  \(\overrightarrow {OA} \) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}\). Tìm diện tích hình tròn (C’).

Phương pháp giải - Xem chi tiết

Diện tích hình tròn \(S = \pi {R^2}\), R là bán kính hình tròn.

Lời giải chi tiết

Phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo \(\overrightarrow {OA} \)  và phép vị tự  \({V_{\left( {O; - \frac{1}{3}} \right)}}\) biến đường tròn (C) thành đường tròn (C’).

Suy ra phép đồng dạng đó có tỉ số là \(k = \left| { - \frac{1}{3}} \right| = \frac{1}{3}\)

Đường tròn (C’) có tâm O’, bán kính R’.

Suy ra O’ là ảnh của O qua phép đồng dạng tỉ số \(\frac{1}{3}\)

Gọi M là điểm bất kì nằm trên đường tròn (C).

Suy ra M’ là ảnh của M qua phép đồng dạng tỉ số \(\frac{1}{3}\)

Khi đó ta có \(O'M' = \frac{1}{3}OM\)

Vì vậy \(R' = \frac{1}{3}R = \frac{1}{3}.9 = 3\)

Diện tích hình tròn (C’) là: \({S_{(C')}} = \pi R{'^2} = \pi {3^2} = 9\pi \)

Vậy diện tích hình tròn (C’) là \(9\pi \).


Bình chọn:
4 trên 3 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí