Giải bài 3 trang 100 SGK Toán 8 tập 1 - Cánh diều>
Hình 20 mô tả mặt cắt dọc phần nổi trên mặt nước của một chiếc tàu thủy.
Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Cánh diều
Toán - Văn - Anh - Khoa học tự nhiên
Đề bài
Một chiếc tàu thủy có mặt cắt dọc phần nổi trên mặt nước của tân tàu được mô tả ở Hình 20. Tính chu vi mặt cắt dọc phần nổi trên mặt nước của thân tàu đó (làm tròn kết quả đến hàng phần mười của mét).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Ta đánh dấu các điểm của các tam giác vuông
Áp dụng định lí Pythagore để tính độ dài các cạnh.
Lời giải chi tiết
*) Áp dụng định lí Pythagore trong tam giác \(\Delta ABC\) vuông tại A có
\(A{C^2} = A{B^2} + B{C^2} = 5,{6^2} + 8,{4^2} = 101,92 \Rightarrow AC = \sqrt {101,92} \)
\(\Delta DEF\) vuông tại F có
\(D{F^2} = D{E^2} + E{F^2} = 16,{2^2} + 10,{8^2} = 379,08 \Rightarrow DF = \sqrt {379,08} \)
Kẻ \(AG \bot FG\)
Khi đó: \(FG = FE - GE = FE - AB = 10,8 - 5,6 = 5,2\)
Áp dụng định lí Pythagore trong \(\Delta AGF\) vuông tại G có
\(A{F^2} = A{G^2} + F{G^2} = 48,{6^2} + 5,{2^2} = 2389 \Rightarrow AF = \sqrt {2389} \)
Chu vi tứ giác ACDF là:
\(AC + CD + DF + AF = \sqrt {101,92} + \sqrt {379,08} + 24 + \sqrt {2389} \approx 102,4\)
Vậy chu vi của mặt cắt dọc phần nổi trên mặt nước của chiếc tàu thủy là khoảng 102,4m.
- Giải bài 2 trang 100 SGK Toán 8 tập 1 - Cánh diều
- Giải bài 1 trang 100 SGK Toán 8 tập 1 - Cánh diều
- Giải mục 2 trang 99 SGK Toán 8 tập 1 - Cánh diều
- Giải mục 1 trang 98 SGK Toán 8 tập 1 - Cánh diều
- Giải Câu hỏi mở đầu trang 98 SGK Toán 8 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục