Giải bài 26 trang 21 sách bài tập toán 11 - Cánh diều


Cho n là số nguyên dương lớn hơn 2. Chọn ngẫu nhiên hai số nguyên dương từ tập hợp\(\left\{ {1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}...;{\rm{ }}2n;{\rm{ }}2n{\rm{ }} + {\rm{ }}1} \right\}.\)

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho n là số nguyên dương lớn hơn 2. Chọn ngẫu nhiên hai số nguyên dương từ tập hợp\(\left\{ {1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}...;{\rm{ }}2n;{\rm{ }}2n{\rm{ }} + {\rm{ }}1} \right\}.\) Tính xác suất để hai số được chọn có tích là số chẵn.

Phương pháp giải - Xem chi tiết

- Xác định số phần tử của không gian mẫu.

- Xác định số phần tử của biến cố.

Lời giải chi tiết

Ta thấy từ tập hợp\(\left\{ {1;{\rm{ }}2;{\rm{ }}3;{\rm{ }}...;{\rm{ }}2n;{\rm{ }}2n{\rm{  +  }}1} \right\}\) có \(2n{\rm{ }} - {\rm{ }}1\) số nguyên dương lớn hơn 2. Mỗi cách chọn ngẫu nhiên hai số nguyên dương từ \(2n{\rm{ }} - {\rm{ }}1\) số nguyên dương cho ta một tổ hợp chập 2 của \(2n{\rm{ }} - {\rm{ }}1\) phần tử. Do đó, không gian mẫu Ω gồm các phần tử chập 2 của \(2n{\rm{ }} - {\rm{ }}1\) phần tử và:

\(n\left( \Omega  \right) = C_{2n - 1}^2 = \frac{{\left( {2n - 1} \right)!}}{{2!\left( {2n - 3} \right)!}} = \frac{{\left( {2n - 1} \right)\left( {2n - 2} \right)}}{2} = \left( {2n - 1} \right)\left( {n - 1} \right).\)

Xét biến cố A: “Hai số được chọn có tích là số chẵn”.

Suy ra biến cố \(\bar A\): “Hai số được chọn có tích là số lẻ”.

Ta thấy hai số được chọn có tích là số lẻ khi và chỉ khi cả hai số đó đều là số lẻ.

Trong \(2n{\rm{ }} - {\rm{ }}1\) số nguyên dương lớn hơn 2 thì có \(n\) số nguyên dương lẻ.

Do đó, số các kết quả thuận lợi cho biến cố \(\bar A\) là:

 \(n\left( {\bar A} \right) = C_n^2 = \frac{{n!}}{{2!\left( {n - 2} \right)!}} = \frac{{n\left( {n - 1} \right)}}{2}.\)

Xác suất của biến cố \(\bar A\) là: \(P\left( {\bar A} \right) = \frac{{n\left( {\bar A} \right)}}{{n\left( \Omega  \right)}} = \frac{{\frac{{n\left( {n - 1} \right)}}{2}}}{{\left( {2n - 1} \right)\left( {n - 1} \right)}} = \frac{n}{{2\left( {2n - 1} \right)}}.\)

Suy ra xác suất của biến cố \(A\) là: \(P\left( A \right) = 1 - P\left( {\bar A} \right) = 1 - \frac{n}{{2\left( {2n - 1} \right)}} = \frac{{3n - 2}}{{2\left( {2n - 1} \right)}}.\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí