Giải bài 24 trang 18 sách bài tập toán 8 - Cánh diều


Tính giá trị của mỗi biểu thức sau:

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Tính giá trị của mỗi biểu thức sau:

a) \(A = {x^2} + xy + \frac{{{y^2}}}{4}\) biết \(x + \frac{y}{2} = 100\)

b) \(B = 25{x^2}z - 10xyz + {y^2}z\) biết \(5x - y =  - 20\) và \(z =  - 5\)

c) \(C = {x^3}yz + 3{x^2}{y^2}z + 3x{y^3}z + {y^4}z\) biết \(x + y =  - 0,5\) và \(yz = 8\)

Phương pháp giải - Xem chi tiết

Ta có thể phân tích đa thức thành nhân tử bằng cách vận dụng trực tiếp hằng đẳng thức hoặc bằng cách vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung.

Lời giải chi tiết

a) Ta có:

\(A = {x^2} + xy + \frac{{{y^2}}}{4} = {x^2} + 2x.\frac{y}{2} + {\left( {\frac{y}{2}} \right)^2} = {\left( {x + \frac{y}{2}} \right)^2}\)

Do \(x + \frac{y}{2} = 100\) nên \(A = {100^2} = 10000\)

b) Ta có:

\(B = 25{x^2}z - 10xyz + {y^2}z = z\left( {25{x^2} - 10xy + {y^2}} \right) = z{\left( {5x - y} \right)^2}\)

Do \(5x - y =  - 20\) và \(z =  - 5\) nên \(B =  - 5{\left( { - 20} \right)^2} =  - 2000\)

c) Ta có:

\(\begin{array}{l}C = {x^3}yz + 3{x^2}{y^2}z + 3x{y^3}z + {y^4}z\\ = yz\left( {{x^3} + 3{x^2}y + 3x{y^2} + {y^3}} \right)\\ = yz{\left( {x + y} \right)^3}\end{array}\)

Do \(x + y =  - 0,5\) và \(yz = 8\) nên \(C = 8{\left( { - 0,5} \right)^3} =  - 1\)


Bình chọn:
4.1 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 8 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí