Giải bài 23 trang 67 sách bài tập toán 8 – Cánh diều


Cho hình bình hành \(ABCD\). Đường phân giác của góc \(A\) cắt \(BD\) tại \(E\), đường phân giác của góc \(B\) cắt \(AC\) tại \(F\). Chứng minh:

Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho hình bình hành \(ABCD\). Đường phân giác của góc \(A\) cắt \(BD\) tại \(E\), đường phân giác của góc \(B\) cắt \(AC\) tại \(F\). Chứng minh:

a)      \(\frac{{BE}}{{ED}} = \frac{{AF}}{{FC}}\);

b)     \(EF//AB\)

Phương pháp giải - Xem chi tiết

Áp dụng tính chất đường phân giác của tam giác: trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.

Lời giải chi tiết

a)      Tam giác \(ABD\) có \(AE\) là đường phân giác của góc \(A\) nên \(\frac{{BE}}{{ED}} = \frac{{AB}}{{AD}}\) (1).

Tam giác \(ABC\) có \(BF\) là đường phân giác của góc \(B\) nên \(\frac{{AF}}{{FC}} = \frac{{AB}}{{BC}}\) (2)

Vì \(AD = BC\) nên từ (1) và (2) suy ra \(\frac{{BE}}{{ED}} = \frac{{AF}}{{FC}}\).

b)     Ta có: \(\frac{{BE}}{{ED}} = \frac{{AF}}{{FC}}\) suy ra \(\frac{{BE + ED}}{{ED}} = \frac{{AF + FC}}{{FC}}\) hay \(\frac{{BD}}{{ED}} = \frac{{AC}}{{FC}}\) hay \(\frac{{2OD}}{{ED}} = \frac{{2OC}}{{FC}}\), suy ra \(\frac{{OD}}{{ED}} = \frac{{OC}}{{FC}}\). Do đó \(EF//CD\) hay \(EF//AB\).


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 8 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí