Tết sale hết! Đồng giá 399K, 499K toàn bộ khoá học tại Tuyensinh247

Duy nhất từ 08-10/01

Chỉ còn 1 ngày
Xem chi tiết

Giải bài 23 trang 104 sách bài tập toán 11 - Cánh diều


Cho tứ diện\(ABCD\). Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(AD\), \(BC\), \(CD\).

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho tứ diện\(ABCD\). Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là trung điểm của \(AB\), \(AD\), \(BC\), \(CD\). Chứng minh rằng giao tuyến của hai mặt phẳng \(\left( {APQ} \right)\) và \(\left( {CMN} \right)\) song song với đường thẳng \(BD\).

Phương pháp giải - Xem chi tiết

Sử dụng kết quả sau: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

Lời giải chi tiết

Gọi \(\left\{ I \right\} = MC \cap AP\), \(\left\{ J \right\} = NC \cap AQ\).

Do \(MC \subset \left( {CMN} \right)\), \(AP \subset \left( {APQ} \right)\) nên suy ra \(I \in \left( {APQ} \right) \cap \left( {CMN} \right)\).

Tương tự ta cũng có \(J \in \left( {APQ} \right) \cap \left( {CMN} \right)\). Như vậy \(IJ\) là giao tuyến của hai mặt phẳng \(\left( {APQ} \right)\) và \(\left( {CMN} \right)\).

Ta có \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(AD\), suy ra \(MN\) là đường trung bình của tam giác \(ABD\). Từ đó ta có \(MN\parallel BD\).

Do \(MN \subset \left( {CMN} \right)\), ta suy ra \(BD\parallel \left( {CMN} \right)\).

Chứng minh tương tự, ta cũng có \(BD\parallel \left( {APQ} \right)\).

Ta có \(BD\parallel \left( {CMN} \right)\), \(BD\parallel \left( {APQ} \right)\), \(IJ\) là giao tuyến của hai mặt phẳng \(\left( {APQ} \right)\) và \(\left( {CMN} \right)\). Vậy \(BD\parallel IJ\).

Bài toán được chứng minh.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.