Giải bài 2.16 trang 46 SGK Toán 8 - Cùng khám phá>
Tính nhanh
Đề bài
Tính nhanh \(\left( {\frac{y}{{x + z}} - \frac{y}{{x + y}} + \frac{{x + y}}{{x + y + z}}} \right) - \left( {\frac{y}{{x + z}} - \frac{z}{{x + y + z}} + \frac{x}{{x + y}}} \right).\)
Phương pháp giải - Xem chi tiết
Ta dùng quy tắc dấu ngoặc để bỏ ngoặc kết hợp với cộng trừ hai phân thức.
Khi bỏ dấu ngoặc có dấu + đằng trước, ta giữ nguyên dấu của các phân thức trong ngoặc;
Khi bỏ dấu ngoặc có dấu - đằng trước, ta phải đổi dấu tất cả các phân thức trong dấu ngoặc: dấu + đổi thành - và dấu - đổi thành +
Lời giải chi tiết
Ta có
\(\begin{array}{l}\left( {\frac{y}{{x + z}} - \frac{y}{{x + y}} + \frac{{x + y}}{{x + y + z}}} \right) - \left( {\frac{y}{{x + z}} - \frac{z}{{x + y + z}} + \frac{x}{{x + y}}} \right)\\ = \frac{y}{{x + z}} - \frac{y}{{x + y}} + \frac{{x + y}}{{x + y + z}} - \frac{y}{{x + z}} + \frac{z}{{x + y + z}} - \frac{x}{{x + y}}\\ = \left( {\frac{y}{{x + z}} - \frac{y}{{x + z}}} \right) + \left( { - \frac{y}{{x + y}} - \frac{x}{{x + y}}} \right) + \left( {\frac{{x + y}}{{x + y + z}}\frac{z}{{x + y + z}}} \right)\\ = 0 + \frac{{ - \left( {x + y} \right)}}{{x + y}} + \frac{{x + y + z}}{{x + y + z}} = \left( { - 1} \right) + 1 = 0\end{array}\)
- Giải bài 2.17 trang 46 SGK Toán 8 - Cùng khám phá
- Giải bài 2.18 trang 46 SGK Toán 8 - Cùng khám phá
- Giải bài 2.15 trang 46 SGK Toán 8 - Cùng khám phá
- Giải bài 2.14 trang 46 SGK Toán 8 - Cùng khám phá
- Giải bài 2.13 trang 46 SGK Toán 8 - Cùng khám phá
>> Xem thêm