Giải bài 1.63 trang 36 sách bài tập toán 12 - Kết nối tri thức


Cho hàm số (y = frac{1}{3}{x^3} + left( {m - 1} right){x^2} + left( {2m - 3} right)x + frac{2}{3}). a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi (m = 2). b) Tìm (m) để hàm số có hai điểm cực trị ({x_1}) và ({x_2}) thỏa mãn (x_1^2 + x_2^2 = 5). c) Tìm (m) để hàm số đồng biến trên (mathbb{R}). d) Tìm (m) để hàm số đồng biến trên khoảng (left( {1; + infty } right)).

Đề bài

Cho hàm số \(y = \frac{1}{3}{x^3} + \left( {m - 1} \right){x^2} + \left( {2m - 3} \right)x + \frac{2}{3}\).

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi \(m = 2\).

b) Tìm \(m\) để hàm số có hai điểm cực trị \({x_1}\) và \({x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 5\).

c) Tìm \(m\) để hàm số đồng biến trên \(\mathbb{R}\).

d) Tìm \(m\) để hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\).

Phương pháp giải - Xem chi tiết

Ý a: Thay \(m = 2\) và hàm số sau đó khảo sát sự biến thiên và vẽ đồ thị hàm số,

Ý b: Xét phương trình hoành độ giao điểm của hai đồ thị, tìm điều kiện để phương trình đó có hai nghiệm phân biệt \({x_1};{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 5\), sử dụng định lý Viète mà một số biến đổi cơ bản để giải ra m.

Ý c: Hàm số đồng biến trên \(\mathbb{R}\) khi \(y' \ge 0\forall x \in \mathbb{R}\). Sử dụng kiến thức về dấu, nghiệm của tam thức bậc hai để làm.

Ý d: Kết hợp với bảng biến thiên để giải bài toán, lưu ý xét hết các trường hợp.

Lời giải chi tiết

a) Khi \(m = 2\) hàm số trở thành \(y = \frac{1}{3}{x^3} + {x^2} + x + \frac{2}{3}\).

Tập xác định: \(\mathbb{R}\).

+ Sự biến thiên:

Ta có \(y' = {x^2} + 2x + 1 = {\left( {x + 1} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\).

Suy ra hàm số đồng biến trên \(\mathbb{R}\) và không có cực trị.

Lập bảng biến thiên:

+ Đồ thị: Đồ thị nhận \(\left( { - 1;\frac{1}{3}} \right)\) làm tâm đối xứng.

b) Ta có \(y' = {x^2} + 2\left( {m - 1} \right)x + 2m - 3\).

Khi đó \(y' = 0 \Leftrightarrow {x^2} + 2\left( {m - 1} \right)x + 2m - 3 = 0 \Leftrightarrow x =  - 1\) hoặc \(x = 3 - 2m\).

Để hàm số có hai cực trị thì đạo hàm \(y'\) phải có hai nghiệm phân biệt \({x_1};{x_2}\), tức là \(3 - 2m \ne  - 1 \Leftrightarrow m \ne 2\)

Để \(x_1^2 + x_2^2 = 5\) thì \({\left( {3 - 2m} \right)^2} + 1 = 5 \Leftrightarrow m \in \left\{ {\frac{1}{2};\frac{5}{2}} \right\}\).

c) Hàm số đồng biến trên \(\mathbb{R}\) khi \(y' \ge 0\forall x \in \mathbb{R}\).

Ta có \({x^2} + 2\left( {m - 1} \right)x + 2m - 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\\Delta ' \le 0\end{array} \right. \Leftrightarrow 3 - 2m =  - 1 \Leftrightarrow m = 2\).

d) Ta có \(y' = 0 \Leftrightarrow x =  - 1\) hoặc \(x = 3 - 2m\).

Trường hợp 1: \( - 1 \le 3 - 2m \Leftrightarrow m \le 2\). Khi đó ta có bảng biến thiên:

Để hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\) thì \(3 - 2m \le 1 \Leftrightarrow m \ge 1\). Suy ra \(1 \le m < 2\)

Trường hợp 2: \(3 - 2m <  - 1 \Leftrightarrow m > 2\). Khi đó ta có bảng biến thiên:

Ta thấy hàm số luôn đồng biến trên \(\left( {1; + \infty } \right)\) nên trường hợp này ta có \(m > 2\).

Vậy \(m \ge 1\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 1.64 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Cho hàm số (y = {x^3} - 3{x^2} + 2) có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Viết phương trình tiếp tuyến (Delta ) của đồ thị (C) tại tâm đối xứng của nó. Chứng minh rằng (Delta ) là tiếp tuyến có hệ số góc nhỏ nhất của (C). c) Tìm các giá trị của tham số (m) để phương trình ({x^3} - 3{x^2} - m = 0) có ba nghiệm phân biệt.

  • Giải bài 1.65 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Cho hàm số (y = frac{{left( {m + 1} right)x - 2m + 1}}{{x - 1}}). a) Tìm (m) để tiệm cận ngang của đồ thị đi qua (left( {1;2} right)). b) Khảo sát và vẽ đồ thị (left( H right)) của hàm số (y = fleft( x right)) với (m) tìm được ở câu a. c) Từ đồ thị (left( H right)) của hàm số (y = fleft( x right)) ở câu b, vẽ đồ thị (y = left| {fleft( x right)} right|).

  • Giải bài 1.66 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Cho hàm số (y = frac{{m{x^2} + left( {2m - 1} right)x - 1}}{{x + 2}}) với (m) là tham số. a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi (m > 0). b) Khảo sát và vẽ đồ thị (left( H right)) của hàm số đã cho với (m = 1). c) Giả sử (Delta ) là tiếp tuyến của đồ thị (left( H right)) tại điểm (M in left( H right)) bất kì. Chứng minh rằng nếu (Delta ) cắt tiệm cận đứng và tiệm cận xiên của (left( H right)) tại A và B thì M luôn là trung điểm của

  • Giải bài 1.67 trang 36 sách bài tập toán 12 - Kết nối tri thức

    Cắt bỏ hình quạt tròn OAB (hình phẳng có nét gạch trong hình dưới đây) từ một mảnh các tông hình tròn bán kính R rồi dán hai bán kính OA và OB của hình quạt tròn còn lại với nhau được một cái phễu có dạng của một hình nón. Gọi x là góc ở tâm của quạt tròn dùng làm phễu (left( {0 < x < 2pi } right)). a) Hãy biểu diễn bán kính đáy r và đường cao h của hình nón theo R và x. b) Tính thể tích của hình nón theo R và x c) Tìm x để hình nón có thể tích lớn nhất và tính giá trị lớn nhất đó.

  • Giải bài 1.68 trang 37 sách bài tập toán 12 - Kết nối tri thức

    Một hành lang giữa hai nhà có hình dạng của một lăng trụ đứng (xem hình bên). Hai mặt bên ABB’A’ và ACC’A’ là hai tấm kính hình chữ nhật dài 20 m, rộng 5 m. Gọi x (m) là độ dài của cạnh BC. a) Tính thể tích V của hình lăng trụ theo x. b) Tìm x sao cho hình lăng trụ có thể tích lớn nhất và tính giá trị lớn nhất đó.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí