Giải bài 1.54 trang 34 sách bài tập toán 12 - Kết nối tri thức>
Cho hàm số (y = fleft( x right)) có đạo hàm (f'left( x right) = x{left( {x - 1} right)^2}{left( {x + 2} right)^4}) với mọi (x in mathbb{R}). Số điểm cực trị của hàm số đã cho là A. (0). B. (1). C. (2). D. (3).
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}{\left( {x + 2} \right)^4}\) với mọi \(x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là
A. \(0\)
B. \(1\)
C. \(2\)
D. \(3\)
Phương pháp giải - Xem chi tiết
+ Giải phương trình \(f'\left( x \right) = 0\) sau đó xét dấu đạo hàm.
+ Số điểm cực trị bằng số lần đổi dấu của đạo hàm.
Lời giải chi tiết
Đáp án: B.
Ta có \(f'\left( x \right) = 0 \Leftrightarrow x{\left( {x - 1} \right)^2}{\left( {x + 2} \right)^4} = 0 \Leftrightarrow x = - 2\) hoặc \(x = 0\) hoặc \(x = 1\).
Đạo hàm chỉ đổi dấu khi đi qua \(x = 0\) nên hàm số chỉ có một điểm cực trị.
Vậy chọn đáp án B.
- Giải bài 1.55 trang 34 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 1.56 trang 34 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 1.57 trang 34 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 1.58 trang 34 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 1.59 trang 34 sách bài tập toán 12 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 4.39 trang 20 sách bài tập toán 12 - Kết nối tri thức
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 42 trang 55 sách bài tập toán 12 - Kết nối tri thức