Giải bài 15 trang 90 sách bài tập toán 9 - Cánh diều tập 2>
Ở Hình 13, hai đường tròn (O), (O’) giao nhau tại A, B và CD là một dây cung của (O). Tia CA cắt (O’) tại E và tia DB cắt (O’) tại F. Chứng minh EF song song với CD.
Đề bài
Ở Hình 13, hai đường tròn (O), (O’) giao nhau tại A, B và CD là một dây cung của (O). Tia CA cắt (O’) tại E và tia DB cắt (O’) tại F. Chứng minh EF song song với CD.
Phương pháp giải - Xem chi tiết
Trong một tứ giác nội tiếp đường tròn, tổng số đo hai góc đối bằng 180o.
Lời giải chi tiết
Ta có tứ giác ABCD nội tiếp đường tròn (O) nên \(\widehat {ACD} = \widehat {ABF}( = {180^o} - \widehat {ABD})\) (1).
Mặt khác, tứ giác ABFE nội tiếp đường tròn (O’) suy ra \(\widehat {ABF} + \widehat {AEF} = {180^o}\) (2).
Từ (1) và (2) ta có \(\widehat {ACD} + \widehat {AEF} = {180^o}\) hay \(\widehat {ECD} + \widehat {CEF} = {180^o}\). Suy ra EF // CD.
- Giải bài 16 trang 90 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 17 trang 90 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 18 trang 91 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 19 trang 91 sách bài tập toán 9 - Cánh diều tập 2
- Giải bài 20 trang 91 sách bài tập toán 9 - Cánh diều tập 2
>> Xem thêm
Các bài khác cùng chuyên mục