Giải bài 1.4 trang 11 Chuyên đề học tập Toán 11 Kết nối tri thức>
Trong mặt phẳng tọa độ Oxy, cho đường tròn (left( C right):{rm{ }}{left( {x{rm{ }}-{rm{ }}1} right)^2}; + {rm{ }}{left( {y{rm{ }} + {rm{ }}2} right)^2}; = {rm{ }}25)
Đề bài
Trong mặt phẳng tọa độ Oxy, cho đường tròn \(\left( C \right):{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}1} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}2} \right)^2}\; = {\rm{ }}25\) và vectơ \(\vec u = \left( {3;\,4} \right)\).
a) Xác định ảnh của tâm đường tròn (C) qua phép tịnh tiến \({T_{\overrightarrow u }}\).
b) Viết phương trình đường tròn (C') là ảnh của (C) qua \({T_{\overrightarrow u }}\).
Phương pháp giải - Xem chi tiết
- Xác định ảnh của tâm qua phép tịnh tiến bằng cách: Nếu \(M'(x';y')\) là ảnh của \(M(x;y)\) qua phép tịnh tiến \({T_{\overrightarrow u }}\) , \(\overrightarrow u = \left( {a;\,b} \right)\) thì biểu thức tọa độ của phép tịnh tiến là \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)
- Phương trình đường tròn tâm I (a,b), bán kính R là:
\(\left( C \right):{\rm{ }}{\left( {x{\rm{ }}-{\rm{ a}}} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ b}}} \right)^2}\; = {\rm{ }}{R^2}\)
Lời giải chi tiết
Ta có \(\left( C \right):{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}1} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}2} \right)^2}\; = {\rm{ }}25\) hay \({\left( {x{\rm{ }}-{\rm{ }}1} \right)^2}\; + {\rm{ }}{\left[ {y{\rm{ }}-{\rm{ }}\left( {-{\rm{ }}2} \right)} \right]^2}\; = {\rm{ }}{5^2}.\)
Suy ra đường tròn (C) có tâm I(1; – 2) và bán kính R = 5.
a) Ảnh của đường tròn (C) qua phép tịnh tiến theo vectơ \(\vec u = \left( {3;\,4} \right)\) là một đường tròn bán kính bằng 5, gọi là (C').
Gọi I' là tâm của (C'). Ta có I' là ảnh của I qua phép tịnh tiến theo vectơ \(\overrightarrow {II'} = \overrightarrow u = (3;4)\). Suy ra I'(4; 2). Vậy ảnh của (C) là đường tròn (C') có tâm I'(4; 2) và bán kính bằng 5.
b) Ta có \(\left( {C'} \right):{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}4} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}2} \right)^2}\; = {\rm{ }}25.\)
- Giải bài 1.5 trang 11 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 1.3 trang 11 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải mục 2 trang 10, 11 Chuyên đề học tập Toán 11 - Kết nối tri thức
- Giải mục 1 trang 9, 10 Chuyên đề học tập Toán 11 - Kết nối tri thức
- Giải mở đầu trang 9 Chuyên đề học tập Toán 11 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 3.24 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.23 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.22 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.21 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.20 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.24 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.23 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.22 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.21 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.20 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức