Giải bài 1.28 trang 18 sách bài tập toán 8 - Kết nối tri thức với cuộc sống


Cho hai đa thức: (P = 4{x^3}y{z^2} - 3{x^2}y - 2{x^3}y{z^2} + {x^2}y - 2xy + y + 5);

Tổng hợp đề thi giữa kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho hai đa thức:

\(P = 4{x^3}y{z^2} - 3{x^2}y - 2{x^3}y{z^2} + {x^2}y - 2xy + y + 5\);

\(Q =  - {x^3}y{z^2} - 2{x^2}y + 3 + 3{x^3}y{z^2} + xy - y + 2\).

a) Thu gọn và xác định bậc của mỗi đa thức P và Q.

b) Xác định bậc của mỗi đa thức \(P + Q\) và \(P - Q\).

Phương pháp giải - Xem chi tiết

a) Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.

b) Muốn cộng (hay trừ) hai đa thức, ta nối hai đa thức đã cho bởi dấu (+) (hoặc dấu (-) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.

Chú ý trước dấu ngoặc là dấu (-) thì khi phá ngoặc, ta đổi dấu tất cả các hạng tử trong dấu ngoặc.

Sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Lời giải chi tiết

a) Ta có

\(P = 4{x^3}y{z^2} - 3{x^2}y - 2{x^3}y{z^2} + {x^2}y - 2xy + y + 5\)

\( = \left( {4{x^3}y{z^2} - 2{x^3}y{z^2}} \right) + \left( { - 3{x^2}y + {x^2}y} \right) - 2xy + y + 5\)

\( = 2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5\).

Đa thức P có bậc \(3 + 1 + 2 = 6\).

\(Q =  - {x^3}y{z^2} - 2{x^2}y + 3 + 3{x^3}y{z^2} + xy - y + 2\)

\( = \left( { - {x^3}y{z^2} + 3{x^3}y{z^2}} \right) - 2{x^2}y + xy - y + \left( {3 + 2} \right)\)

\( = 2{x^3}y{z^2} - 2{x^2}y + xy - y + 5\).

Đa thức Q có bậc là \(3 + 1 + 2 = 6\).

b) Ta có

  • \(P + Q = \left( {2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5} \right) + \left( {2{x^3}y{z^2} - 2{x^2}y + xy - y + 5} \right)\)

\( = 2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5 + 2{x^3}y{z^2} - 2{x^2}y + xy - y + 5\)

\( = \left( {2{x^3}y{z^2} + 2{x^3}y{z^2}} \right) + \left( { - 2{x^2}y - 2{x^2}y} \right) + \left( { - 2xy + xy} \right) + \left( {y - y} \right) + \left( {5 + 5} \right)\)

\( = 4{x^3}y{z^2} - 4{x^2}y - xy + 10\).

Đa thức P+Q là đa thức bậc 6.

  • \(P - Q = \left( {2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5} \right) - \left( {2{x^3}y{z^2} - 2{x^2}y + xy - y + 5} \right)\)

\( = 2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5 - 2{x^3}y{z^2} + 2{x^2}y - xy + y - 5\)

\( = \left( {2{x^3}y{z^2} - 2{x^3}y{z^2}} \right) + \left( { - 2{x^2}y + 2{x^2}y} \right) + \left( { - 2xy - xy} \right) + \left( {y + y} \right) + \left( {5 - 5} \right)\)

\( =  - 3xy + 2y\).

Đa thức P-Q là đa thức bậc 2.


Bình chọn:
3.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí