Giải bài 1.23 trang 19 sách bài tập toán 12 - Kết nối tri thức>
Tìm tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau: a) (y = frac{{{x^2} - x - 5}}{{x - 2}}); b) (y = frac{{3{x^2} + 8x - 2}}{{x + 3}}).
Đề bài
Tìm tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau:
a) \(y = \frac{{{x^2} - x - 5}}{{x - 2}}\);
b) \(y = \frac{{3{x^2} + 8x - 2}}{{x + 3}}\).
Phương pháp giải - Xem chi tiết
Sử dụng định nghĩa tiệm cận xiên, đứng của đồ thị hàm số, tính các giới hạn để tìm các tiệm cận đó.
Lời giải chi tiết
a) Ta có \(y = x + 1 - \frac{3}{{x - 2}}\). Khi đó \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {x + 1 - \frac{3}{{x - 2}}} \right) = + \infty \); \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1 - \frac{3}{{x - 2}}} \right) = - \infty \).
Do đó đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {x + 1 - \frac{3}{{x - 2}}} \right) - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0\). Do đó đường thẳng \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.
b) Ta có \(y = 3x - 1 + \frac{1}{{x + 3}}.\)\(\mathop {\lim }\limits_{x \to - {3^ + }} \left( {3x - 1 + \frac{1}{{x + 3}}} \right) = + \infty \); \(\mathop {\lim }\limits_{x \to - {3^ - }} \left( {3x - 1 + \frac{1}{{x + 3}}} \right) = - \infty \).
Do đó đường thẳng \(x = - 3\) là tiệm cận đứng của đồ thị hàm số.
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {3x - 1 + \frac{1}{{x + 3}}} \right) - \left( {3x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{1}{{x + 3}}} \right) = 0\). Do đó đường thẳng \(y = 3x - 1\) là tiệm cận xiên của đồ thị hàm số.
- Giải bài 1.24 trang 19 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 1.25 trang 19 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 1.26 trang 20 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 1.27 trang 20 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 1.28 trang 20 sách bài tập toán 12 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 42 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Đề minh họa kiểm tra cuối học kì 2 - SBT Toán 12 Kết nối tri thức
- Giải bài 45 trang 56 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 44 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 43 trang 55 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 42 trang 55 sách bài tập toán 12 - Kết nối tri thức