Giải bài 1.23 trang 19 sách bài tập toán 12 - Kết nối tri thức


Tìm tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau: a) (y = frac{{{x^2} - x - 5}}{{x - 2}}); b) (y = frac{{3{x^2} + 8x - 2}}{{x + 3}}).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Tìm tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau:

a) \(y = \frac{{{x^2} - x - 5}}{{x - 2}}\);

b) \(y = \frac{{3{x^2} + 8x - 2}}{{x + 3}}\).

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa tiệm cận xiên, đứng của đồ thị hàm số, tính các giới hạn để tìm các tiệm cận đó.

Lời giải chi tiết

a) Ta có \(y = x + 1 - \frac{3}{{x - 2}}\). Khi đó \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {x + 1 - \frac{3}{{x - 2}}} \right) =  + \infty \); \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1 - \frac{3}{{x - 2}}} \right) =  - \infty \).

Do đó đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.

Ta có \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {\left( {x + 1 - \frac{3}{{x - 2}}} \right) - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0\). Do đó đường thẳng \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.

b) Ta có \(y = 3x - 1 + \frac{1}{{x + 3}}.\)\(\mathop {\lim }\limits_{x \to  - {3^ + }} \left( {3x - 1 + \frac{1}{{x + 3}}} \right) =  + \infty \); \(\mathop {\lim }\limits_{x \to  - {3^ - }} \left( {3x - 1 + \frac{1}{{x + 3}}} \right) =  - \infty \).

Do đó đường thẳng \(x =  - 3\) là tiệm cận đứng của đồ thị hàm số.

Ta có \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {\left( {3x - 1 + \frac{1}{{x + 3}}} \right) - \left( {3x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{1}{{x + 3}}} \right) = 0\). Do đó đường thẳng \(y = 3x - 1\) là tiệm cận xiên của đồ thị hàm số.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí