Giải bài 12 trang 12 sách bài tập toán 8 - Cánh diều>
Chứng minh rằng biểu thức (P = left( {2y - x} right)left( {x + y} right) + xleft( {y - x} right) - 2yleft( {x + 5y} right) - 1)
Đề bài
Chứng minh rằng biểu thức \(P = \left( {2y - x} \right)\left( {x + y} \right) + x\left( {y - x} \right) - 2y\left( {x + 5y} \right) - 1\) luôn nhận giá trị âm với mọi giá trị của biến \(x\) và \(y\).
Phương pháp giải - Xem chi tiết
Áp dụng các phương pháp cộng, trừ, nhân, chia đa thức để rút gọn biểu thức sau đó chứng minh biểu thức luôn nhận giá trị âm.
Lời giải chi tiết
Ta có:
\(\begin{array}{l}P = \left( {2y - x} \right)\left( {x + y} \right) + x\left( {y - x} \right) - 2y\left( {x + 5y} \right) - 1\\ = 2xy + 2{y^2} - {x^2} - xy + xy - {x^2} - 2xy - 10{y^2} - 1\\ = - 2{x^2} - 8{y^2} - 1\end{array}\)
Do \({x^2} \ge 0,{y^2} \ge 0\) nên \( - 2{x^2} - 8{y^2} - 1 < 0\) với mọi giá trị của biến \(x,y\).
Vậy \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\) và \(y\).
- Giải bài 13 trang 12 sách bài tập toán 8 - Cánh diều
- Giải bài 14 trang 12 sách bài tập toán 8 - Cánh diều
- Giải bài 11 trang 12 sách bài tập toán 8 - Cánh diều
- Giải bài 10 trang 12 sách bài tập toán 8 - Cánh diều
- Giải bài 9 trang 11 sách bài tập toán 8 - Cánh diều
>> Xem thêm