Giải chuyên đề học tập Toán lớp 11 Kết nối tri thức
Bài 4. Phép quay và phép đối xứng tâm Chuyên đề học tập..
Giải bài 1.14 trang 20 Chuyên đề học tập Toán 11 Kết nối tri thức>
Trong mặt phẳng tọa độ Oxy, cho đường tròn (left( C right):{rm{ }}{left( {x{rm{ }}-{rm{ }}2} right)^2}; + {rm{ }}{y^2}; = {rm{ }}1.)
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Trong mặt phẳng tọa độ Oxy, cho đường tròn \(\left( C \right):{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}2} \right)^2}\; + {\rm{ }}{y^2}\; = {\rm{ }}1.\)
a) Tìm tọa độ tâm đường tròn (C') là ảnh của đường tròn (C) qua \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}}\).
b) Viết phương trình (C').
Phương pháp giải - Xem chi tiết
- Phép quay tâm O, góc quay \(\alpha\) :
Khi đó, \(\left\{ \begin{array}{l}x' = x\cos \alpha - y\sin \alpha \\y' = x\sin \alpha + y\cos \alpha \end{array} \right.\)
- Phương trình đường tròn tâm I(a;b), bán kính R là: \({\left( {x{\rm{ }}-{\rm{ a}}} \right)^2}\; + {\left( {{\rm{ }}y-{\rm{ b}}} \right)^2}\; = {\rm{ }}{R^2}.\)
Lời giải chi tiết
Ta có \(\left( C \right):{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}2} \right)^2}\; + {\rm{ }}{y^2}\; = {\rm{ }}1\). Suy ra đường tròn (C) có tâm I(2; 0) và bán kính R = 1.
Vì (C') là ảnh của đường tròn (C) qua phép quay \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}}\) nên tâm I' của đường tròn (C') là ảnh của tâm I của đường tròn (C) qua phép quay \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}}\).

Vì I(2; 0) nên I'(0; 2).
b) Phép quay biến đường tròn thành đường tròn có cùng bán kính nên bán kính của đường tròn (C') là 1.
Vậy phương trình đường tròn (C') là \({x^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}2} \right)^2}\; = {\rm{ }}1.\)
- Giải bài 1.15 trang 20 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 1.13 trang 20 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 1.12 trang 20 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 1.11 trang 20 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải mục 3 trang 18, 19 Chuyên đề học tập Toán 11 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 3.24 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.23 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.22 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.21 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.20 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.24 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.23 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.22 trang 81 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.21 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải bài 3.20 trang 80 Chuyên đề học tập Toán 11 Kết nối tri thức




