Giải bài 1 trang 99 sách bài tập toán 11 - Chân trời sáng tạo tập 2


Trong một cuộc gặp mặt có 63 đoàn viên tham dự, trong đó có 25 người đến từ miền Bắc, 19 người đến từ miền Nam và 19 người đến từ miền Trung. a) Gặp ngẫu nhiên 1 đoàn viên trong cuộc gặp mặt, b) Gặp ngẫu nhiên 2 đoàn viên trong cuộc gặp mặt,

Đề bài

Trong một cuộc gặp mặt có 63 đoàn viên tham dự, trong đó có 25 người đến từ miền Bắc, 19 người đến từ miền Nam và 19 người đến từ miền Trung.

a) Gặp ngẫu nhiên 1 đoàn viên trong cuộc gặp mặt, tính xác suất của biến cố “Đoàn viên được gặp đến từ miền Nam hoặc miền Trung”.

b) Gặp ngẫu nhiên 2 đoàn viên trong cuộc gặp mặt, tính xác suất của biến cố “Hai đoàn viên được gặp cùng đến từ miền Bắc hoặc cùng đến từ miền Nam”.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về biến cố hợp: Cho hai biến cố A và B. Biến cố “A hoặc B xảy ra”, kí hiệu là \(A \cup B\), được gọi là biến cố hợp của A và B.

Sử dụng kiến thức về quy tắc cộng hai biến cố xung khắc: Cho hai biến cố xung khắc A và B. Khi đó, \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).

Lời giải chi tiết

a) Xác suất để gặp được 1 đoàn viên đến từ miền Nam là: \(P\left( A \right) = \frac{{19}}{{63}}\)

Xác suất để gặp được 1 đoàn viên đến từ miền Trung là: \(P\left( B \right) = \frac{{19}}{{63}}\)

Xác suất để gặp được 1 đoàn viên đến từ miền Trung hoặc miền Nam là:

\(P\left( A \right) + P\left( B \right) = \frac{{19}}{{63}} + \frac{{19}}{{63}} = \frac{{38}}{{63}}\)

b) Xác suất để gặp được 2 đoàn viên cùng đến từ miền Nam là: \(P\left( A \right) = \frac{{C_{19}^2}}{{C_{63}^2}} = \frac{{19}}{{217}}\)

Xác suất để gặp được 2 đoàn viên cùng đến từ miền Bắc là: \(P\left( B \right) = \frac{{C_{25}^2}}{{C_{63}^2}} = \frac{{100}}{{651}}\)

Xác suất để gặp được 2 đoàn viên cùng đến từ miền Bắc hoặc miền Nam là:

\(P\left( A \right) + P\left( B \right) = \frac{{19}}{{217}} + \frac{{100}}{{651}} = \frac{{157}}{{651}}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí