Đề kiểm tra 15 phút - Đề số 4 - Bài 3 - Chương 1 - Đại số 7


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 3 - Chương 1 - Đại số 7

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Tính: \( - 2 + {1 \over {1 + {1 \over {2 + {1 \over {1 + {1 \over 2}}}}}}}\) 

Bài 2: Tìm các giá trị nguyên của x để biểu thức sau đây nhận giá trị dương: \({x^2} + x.\)

LG bài 1

Phương pháp giải:

Thực hiện cộng các số hữu tỉ.

Lời giải chi tiết:

\( - 2 + {1 \over {1 + {1 \over {2 + {1 \over {1 + {1 \over 2}}}}}}} =  - 2 + {1 \over {1 + {1 \over {2 + {1 \over {{3 \over 2}}}}}}} \) 

\(=  - 2 + {1 \over {1 + {1 \over {2 + {2 \over 3}}}}} =  - 2 + {1 \over {1 + {1 \over {{8 \over 3}}}}}\)

\(=  - 2 + {1 \over {1 + {3 \over 8}}} =  - 2 + {1 \over {{{11} \over 8}}}  \)

\(=  - 2 + {8 \over {11}} = {{ - 22 + 8} \over {11}} = {{ - 14} \over {11}}.  \)

LG bài 2

Phương pháp giải:

Tích 2 số là 1 số dương khi hai số đó cùng dấu (cùng dương hoặc cùng âm)

Lời giải chi tiết:

Ta có: \(x^2+x=x.x+x.1=x(x+1)\)

Để \({x^2} + x = x\left( {x + 1} \right) > 0,\,\) thì x và x + 1 cùng dấu.

\(  +  )\,\,\left\{ \matrix{ x > 0 \hfill \cr x + 1 > 0 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{ x > 0 \hfill \cr x >  - 1 \hfill \cr}  \right.\)\(\Rightarrow x > 0\)

\( +  )\,\,\,\left\{ \matrix{ x < 0 \hfill \cr x + 1 < 0 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{ x < 0 \hfill \cr x <  - 1 \hfill \cr}  \right.\)\(\; \Rightarrow x <  - 1.\)

Vì \(x \in \mathbb Z\), nên \(x \in \left\{ {1;2;3;...} \right\}\) hoặc \(x \in \left\{ { - 2; - 3; - 4;...} \right\}\)

Loigiaihay.com


Bình chọn:
3.9 trên 7 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí