Câu hỏi

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đạo hàm tại điểm \({x_0} = 1\) và \(f'\left( {{x_0}} \right) = \sqrt 2 \). Đạo hàm của hàm số \(y = \sqrt 2 .f\left( x \right) + 1009{x^2}\) tại điểm \({x_0} = 1\) bằng:

  • A \(1011\)
  • B \(2019\)
  • C \(1010\)
  • D \(2020\)

Phương pháp giải:

\(\left[ {f\left( x \right) + g\left( x \right)} \right]' = f'\left( x \right) + g'\left( x \right)\).

Lời giải chi tiết:

Ta có: \(y' = \sqrt 2 f'\left( x \right) + 2018x \Rightarrow y'\left( 1 \right) = \sqrt 2 f'\left( 1 \right) + 2018 = 2 + 2018 = 2020\).

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay