Câu hỏi
Giới hạn \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}}} \right)\) là một phân số tối giản \(\frac{a}{b}\left( {b > 0} \right)\). Khi đó giá trị của \(b - a\) bằng:
- A \(15\)
- B \(16\)
- C \(18\)
- D \(17\)
Phương pháp giải:
Tính \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}}} \right)\) bằng cách phân tích:
\(\begin{array}{l}\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}} = \frac{1}{{\left( {x - 2} \right)\left( {3x + 2} \right)}} + \frac{1}{{\left( {x - 2} \right)\left( {x - 10} \right)}}\\ = \frac{{x - 10 + 3x + 2}}{{\left( {x - 2} \right)\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{{4\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{4}{{\left( {3x + 2} \right)\left( {x - 10} \right)}}.\end{array}\)
Lời giải chi tiết:
Ta có : \(\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}} = \frac{1}{{\left( {x - 1} \right)\left( {3x + 2} \right)}} + \frac{1}{{\left( {x - 2} \right)\left( {x - 10} \right)}}\)
\( = \frac{{x - 10 + 3x + 2}}{{\left( {x - 2} \right)\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{{4\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{4}{{\left( {3x + 2} \right)\left( {x - 10} \right)}}\)
Do đó: \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}}} \right) = \mathop {\lim }\limits_{x \to 2} \frac{4}{{\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{4}{{\left( {3.2 + 2} \right)\left( {2 - 10} \right)}} = \frac{{ - 1}}{{16}}.\)
Vậy theo bài ra thì \(a = - 1,\,\,b = 16\) nên \(b - a = 17.\)
Chọn D.