Câu hỏi
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên khoảng \(\left( a;b \right).\) Mệnh đề nào sau đây sai ?
- A Nếu \({f}'\left( x \right)<0\) với mọi \(x\in \left( a;b \right)\) thì hàm số \(y=f\left( x \right)\) nghịch biến trên \(\left( a;b \right).\)
- B Nếu \({f}'\left( x \right)>0\) với mọi \(x\in \left( a;b \right)\) thì hàm số \(y=f\left( x \right)\) đồng biến trên \(\left( a;b \right).\)
- C Nếu hàm số \(y=f\left( x \right)\) nghịch biến trên \(\left( a;b \right)\) thì \({f}'\left( x \right)\le 0\) với mọi \(x\in \left( a;b \right).\)
- D Nếu hàm số \(y=f\left( x \right)\) đồng biến trên \(\left( a;b \right)\) thì \({f}'\left( x \right)>0\) với mọi \(x\in \left( a;b \right).\)
Phương pháp giải:
Lý thuyết về tính đơn điệu (đồng biến – nghịch biến) của hàm số
Lời giải chi tiết:
Nếu hàm số \(y=f\left( x \right)\) đồng biến trên \(\left( a;b \right)\) thì \({f}'\left( x \right)\ge 0\) với mọi \(x\in \left( a;b \right).\)
Chọn D