Câu hỏi
Cho hàm số \(y = {x^3} - 3{x^2} + 2x.\) Có tất cả bao nhiêu tiếp tuyến của đồ thị hàm số đi qua điểm \(A\left( { - \,1;0} \right)\)?
- A 1
- B 2
- C 3
- D 4
Phương pháp giải:
Viết phương trình tiếp tuyến của đồ thị tại điểm thuộc đồ thị hàm số. Cho điểm thuộc tiếp tuyến để xác định giá trị của tham số m
Lời giải chi tiết:
Gọi \(M\left( {m;y\left( m \right)} \right)\) thuộc \(\left( C \right) \Rightarrow \,\,y'\left( m \right) = 3{m^2} - 6m + 2\) và \(y\left( m \right) = {m^3} - 3{m^2} + 2m.\)
Suy ra phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\) là \(y - {m^3} + 3{m^2} - 2m = \left( {3{m^2} - 6m + 2} \right)\left( {x - m} \right).\)
Vì tiếp tuyến \(d\) đi qua \(A\left( { - \,1;0} \right)\) suy ra \( - \,{m^3} + 3{m^2} - 2m = \left( {3{m^2} - 6m + 2} \right)\left( { - \,1 - m} \right) \Leftrightarrow {m^3} - 3m + 1 = 0.\)
Giải phương trình, tìm được 3 nghiệm \(m\buildrel {} \over \longrightarrow \) Có tất cả 3 tiếp tuyến cần tìm.
Chọn C.