Câu hỏi
Tìm tọa độ điểm M trên đồ thị hàm số \(y = {1 \over {x - 1}}\) sao cho tiếp tuyến tại đó cùng với các trục tọa độ tạo thành một tam giác có diện tích bằng 2 là:
- A \(\left( {{1 \over 4};{{ - 4} \over 3}} \right)\)
- B \(\left( { - {1 \over 4}; - {4 \over 5}} \right)\)
- C \(\left( {{3 \over 4}; - 4} \right)\)
- D \(\left( { - {3 \over 4}; - {4 \over 7}} \right)\)
Phương pháp giải:
Gọi tọa độ điểm M thuộc đồ thị hàm số \(y = {1 \over {x - 1}}\) có dạng \(M\left( {a;{1 \over {a - 1}}} \right)\)
Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm M.
Tìm giao điểm A, B của tiếp tuyến với các trục tọa độ. Tính diện tích tam giác OAB.
Lời giải chi tiết:
Gọi \(M\left( {a;{1 \over {a - 1}}} \right)\) thuộc đồ thị hàm số \(y = {1 \over {x - 1}}\).
Ta có: \(y' = {{ - 1} \over {{{\left( {x - 1} \right)}^2}}} \Rightarrow y'\left( a \right) = {{ - 1} \over {{{\left( {a - 1} \right)}^2}}}\)
\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là: \(y = {{ - 1} \over {{{\left( {a - 1} \right)}^2}}}\left( {x - a} \right) + {1 \over {a - 1}}\,\,\left( d \right)\)
\(\eqalign{ & A = \left( d \right) \cap Ox \Rightarrow 0 = {{ - 1} \over {{{\left( {a - 1} \right)}^2}}}\left( {x - a} \right) + {1 \over {a - 1}} \cr & \Leftrightarrow {1 \over {{{\left( {a - 1} \right)}^2}}}\left( {x - a} \right) = {1 \over {a - 1}} \cr & \Leftrightarrow x - a = a - 1 \Rightarrow x = 2a - 1 \Rightarrow A\left( {2a - 1;0} \right) \Rightarrow OA = \left| {2a - 1} \right| \cr & B = \left( d \right) \cap Oy \Rightarrow y = {{ - 1} \over {{{\left( {a - 1} \right)}^2}}}\left( {0 - a} \right) + {1 \over {a - 1}} \cr & \Leftrightarrow y = {a \over {{{\left( {a - 1} \right)}^2}}} + {1 \over {a - 1}} = {{a + a - 1} \over {{{\left( {a - 1} \right)}^2}}} = {{2a - 1} \over {{{\left( {a - 1} \right)}^2}}} \Rightarrow B\left( {0;{{2a - 1} \over {{{\left( {a - 1} \right)}^2}}}} \right) \Rightarrow OB = {{\left| {2a - 1} \right|} \over {{{\left( {a - 1} \right)}^2}}} \cr & \Rightarrow {S_{\Delta OAB}} = {1 \over 2}OA.OB = {1 \over 2}.\left| {2a - 1} \right|.{{\left| {2a - 1} \right|} \over {{{\left( {a - 1} \right)}^2}}} = {{{{\left( {2a - 1} \right)}^2}} \over {2{{\left( {a - 1} \right)}^2}}} = 2 \cr & \Leftrightarrow 4{a^2} - 4a + 1 = 4{a^2} - 8a + 4 \cr & \Leftrightarrow 4a = 3 \Leftrightarrow a = {3 \over 4} \Rightarrow M\left( {{3 \over 4}; - 4} \right) \cr} \)
Chọn C.