Câu hỏi

Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2\). Nghiệm của bất phương trình \(f'\left( x \right) > 0\) là :

  • A \(\left( {0;2} \right)\)
  • B \(\left( { - \infty ;0} \right)\)
  • C \(\left( {2; + \infty } \right)\)
  • D \(\left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\)

Phương pháp giải:

Tính \(f'\left( x \right)\), giải bất phương trình \(f'\left( x \right) > 0\). 

Lời giải chi tiết:

Ta có : \(f'\left( x \right) = 3{x^2} - 3.2x = 3{x^2} - 6x > 0 \Leftrightarrow \left[ \matrix{  x > 2 \hfill \cr   x < 0 \hfill \cr}  \right.\)

Vậy tập nghiệm của bất phương trình là :  \(\left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay