Câu hỏi

Biết \(I=\int\limits_{0}^{\frac{\pi }{2}}{\frac{\sin 2x\cos x}{1+\cos x}dx}=-a+2\ln b\), với a, b là các số nguyên dương. Chọn đáp án đúng?

  • A  a = 2b                        
  • B  a + b = 5                                
  • C  ab = 3                        
  • D  a – b + 1 = 0

Phương pháp giải:

Sử dụng phương pháp đổi biến, đặt \(t=\cos x\)

Lời giải chi tiết:

\(I=\int\limits_{0}^{\frac{\pi }{2}}{\frac{\sin 2x\cos x}{1+\cos x}dx}=\int\limits_{0}^{\frac{\pi }{2}}{\frac{2\sin x{{\cos }^{2}}x}{1+\cos x}dx}\)

Đặt \(t=\cos x\Leftrightarrow dt=-\sin xdx\)

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Leftrightarrow t = 1\\x = \frac{\pi }{2} \Leftrightarrow t = 0\end{array} \right.\) , khi đó

\(I=-2\int\limits_{1}^{0}{\frac{{{t}^{2}}dt}{1+t}}=2\int\limits_{0}^{1}{\left( t-1+\frac{1}{1+t} \right)dt}=\left. 2\left( \frac{{{t}^{2}}}{2}-t+\ln \left| 1+t \right| \right) \right|_{0}^{1}=2\left( \frac{-1}{2}+\ln 2 \right)=-1+2\ln 2\Leftrightarrow \left\{ \begin{align} a=1 \\  b=2 \\ \end{align} \right.\) 

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay