Câu hỏi
Biết \(I=\int\limits_{0}^{\frac{\pi }{2}}{\frac{\sin 2x\cos x}{1+\cos x}dx}=-a+2\ln b\), với a, b là các số nguyên dương. Chọn đáp án đúng?
- A a = 2b
- B a + b = 5
- C ab = 3
- D a – b + 1 = 0
Phương pháp giải:
Sử dụng phương pháp đổi biến, đặt \(t=\cos x\)
Lời giải chi tiết:
\(I=\int\limits_{0}^{\frac{\pi }{2}}{\frac{\sin 2x\cos x}{1+\cos x}dx}=\int\limits_{0}^{\frac{\pi }{2}}{\frac{2\sin x{{\cos }^{2}}x}{1+\cos x}dx}\)
Đặt \(t=\cos x\Leftrightarrow dt=-\sin xdx\)
Đổi cận \(\left\{ \begin{array}{l}x = 0 \Leftrightarrow t = 1\\x = \frac{\pi }{2} \Leftrightarrow t = 0\end{array} \right.\) , khi đó
\(I=-2\int\limits_{1}^{0}{\frac{{{t}^{2}}dt}{1+t}}=2\int\limits_{0}^{1}{\left( t-1+\frac{1}{1+t} \right)dt}=\left. 2\left( \frac{{{t}^{2}}}{2}-t+\ln \left| 1+t \right| \right) \right|_{0}^{1}=2\left( \frac{-1}{2}+\ln 2 \right)=-1+2\ln 2\Leftrightarrow \left\{ \begin{align} a=1 \\ b=2 \\ \end{align} \right.\)
Chọn D.