Câu hỏi
Giới hạn của hàm số \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x} - x} \right)\) bằng bao nhiêu
- A 0
- B 2
- C \( + \infty \)
- D 1
Phương pháp giải:
Nhân cả tử và mẫu với biểu thức liên hợp của tử sau đó chia cả tử và mẫu cho x mũ bậc cao nhất của cả tử và mẫu, sử dụng giới hạn \(\mathop {\lim }\limits_{x \to \infty } {1 \over {{n^\alpha }}} = 0\,\,\left( {\alpha > 0} \right)\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } {{{x^2} + 2x - {x^2}} \over {\sqrt {{x^2} + 2x} + x}} = \mathop {\lim }\limits_{x \to + \infty } {{2x} \over {\sqrt {{x^2} + 2x} + x}} = \mathop {\lim }\limits_{x \to + \infty } {2 \over {\sqrt {1 + {2 \over x}} + 1}} = 1\)
Chọn D.