Câu hỏi

Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD, biết các đường thẳng AB, BC, CD, DA tương ứng đi qua \(M\left( {10;3} \right),N\left( {7; - 2} \right),P\left( { - 3;4} \right),Q\left( {4; - 7} \right)\). Phương trình đường thẳng AB là:

  • A \(\left[ \begin{array}{l}x - 4y - 2 = 0\\2x + 9y + 47 = 0\end{array} \right.\)                                      
  • B \(\left[ \begin{array}{l}x - 4y + 2 = 0\\2x - 9y - 47 = 0\end{array} \right.\)
  • C \(\left[ \begin{array}{l}x - 4y + 2 = 0\\2x + 9y - 47 = 0\end{array} \right.\)                                      
  • D \(\left[ \begin{array}{l}x + 4y + 2 = 0\\2x + 9y - 47 = 0\end{array} \right.\)

Phương pháp giải:

Gọi VTPT của AB là \(\overrightarrow {{n_{AB}}}  = \left( {a,b} \right)\,\,\left( {{a^2} + {b^2} > 0} \right) \Rightarrow \overrightarrow {{n_{BC}}}  = \left( {b; - a} \right)\). Khi đó cạnh của hình vuông bằng \(d\left( {P;AB} \right) = d\left( {Q;BC} \right)\).

Lời giải chi tiết:

Gọi VTPT của AB là \(\overrightarrow {{n_{AB}}}  = \left( {a,b} \right)\,\,\left( {{a^2} + {b^2} > 0} \right) \Rightarrow \overrightarrow {{n_{BC}}}  = \left( {b; - a} \right)\).

Phương trình đường thẳng AB là \(a\left( {x - 10} \right) + b\left( {y - 3} \right) = 0 \Leftrightarrow ax + by - 10a - 3b = 0\)

\(d\left( {AB;CD} \right) = d\left( {P;AB} \right) = \frac{{\left| { - 3a + 4b - 10a - 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| { - 13a + b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Phương trình đường thẳng BC : \( - b\left( {x - 7} \right) + a\left( {y + 2} \right) = 0 \Leftrightarrow  - bx + ay + 7b + 2a = 0\)

\(d\left( {AD;BC} \right) = d\left( {Q;BC} \right) = \frac{{\left| { - 4b - 7a + 7b + 2a} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| { - 5a + 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Vì ABCD là hình vuông nên

\(\begin{array}{l}d\left( {AB;CD} \right) = d\left( {AD;BC} \right) \Rightarrow \frac{{\left| { - 13a + b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| { - 5a + 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }}\\ \Leftrightarrow \left[ \begin{array}{l}- 13a + b =  - 5a + 3b\\ - 13a + b = 5a - 3b\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}8a =  - 2b\\18a = 4b\end{array} \right.\end{array}\)

TH1 : \(8a =  - 2b.\) Chọn \(a = 1 \Rightarrow b =  - 4 \Rightarrow pt\left( {AB} \right):x - 4y + 2 = 0\)

TH2 : \(18a = 4b.\)  Chọn \(a = 2 \Rightarrow b = 9 \Rightarrow pt\left( {AB} \right):2x + 9y - 47 = 0\)

Chọn C.  


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay