Câu hỏi
Tìm \(m\) để khoảng cách từ điểm \(A\left( {\dfrac{1}{2};1;4} \right)\) đến đường thẳng \(\left( d \right):\,\,\,\left\{ \begin{array}{l}x = 1 - 2m + mt\\y = - 2 + 2m + \left( {1 - m} \right)t\\z = 1 + t\end{array} \right.\) đạt giá trị lớn nhất.
- A \(m = \dfrac{2}{3}\)
- B \(m = \dfrac{4}{3}\)
- C \(m = \dfrac{1}{3}\)
- D \(m = 1\)
Phương pháp giải:
- Nhận xét đường thẳng d luôn đi qua một điểm cố định.
- Do đó khoảng cách lớn nhất chính là khoảng cách từ A đến điểm cố định đó.
Lời giải chi tiết:
Cho \(t = 2\) thì \(\left\{ \begin{array}{l}x = 1 - 2m + 2m = 1\\y = - 2 + 2m + \left( {1 - m} \right).2 = 0\\z = 1 + 2 = 3\end{array} \right.\)
Do đó (d) luôn đi qua điểm \(M\left( {1;0;3} \right)\) cố định.
Gọi H là hình chiếu của A lên (d) thì \(d\left( {A,\left( d \right)} \right) = AH \le AM\) với mọi vị trí của H.
Do đó để \(d\left( {A,\left( d \right)} \right)\) đạt GTLN hay \(A{H_{\max }}\) thì \(H \equiv M\) hay \(AM \bot d\)
Ta có: \(\overrightarrow {AM} = \left( {\dfrac{1}{2}; - 1; - 1} \right),\overrightarrow {{u_d}} = \left( {m;1 - m;1} \right)\)
\(\begin{array}{l}AM \bot d \Leftrightarrow \overrightarrow {AM} .\overrightarrow {{u_d}} = 0\\ \Leftrightarrow \dfrac{1}{2}.m - 1.\left( {1 - m} \right) - 1.1 = 0\\ \Leftrightarrow \dfrac{3}{2}m - 2 = 0 \Leftrightarrow m = \dfrac{4}{3}.\end{array}\)
Chọn B.