Môn Toán - Lớp 12
30 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ thông hiểu
Câu hỏi
Giá trị lớn nhất của hàm số \(y = \dfrac{{{x^2} - 2x + 1}}{{x + 2}}\) trên đoạn\(\left[ {0;3} \right]\) bằng
- A \(0\).
- B \(\dfrac{1}{2}\).
- C \(\dfrac{3}{2}\).
- D \(\dfrac{4}{5}\).
Phương pháp giải:
Để tìm GTNN, GTLN của hàm số \(f\) trên đoạn \(\left[ {a;b} \right]\), ta làm như sau:
- Tìm các điểm \({x_1};{x_2};...;{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số \(f\) có đạo hàm bằng 0 hoặc không có đạo hàm.
- Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right);\,\,f\left( a \right);\,f\left( b \right)\)
- So sánh các giá trị vừa tìm được. Số lớn nhất trong các giá trị đó chính là GTLN của \(f\) trên \(\left[ {a;b} \right]\); số nhỏ nhất trong các giá trị đó chính là GTNN của \(f\) trên \(\left[ {a;b} \right]\).
Lời giải chi tiết:
\(y = \dfrac{{{x^2} - 2x + 1}}{{x + 2}}\), \(x \in \left[ {0;3} \right]\)
Ta có: \(y' = \dfrac{{\left( {2x - 2} \right)\left( {x + 2} \right) - \left( {{x^2} - 2x + 1} \right)}}{{{{\left( {x + 2} \right)}^2}}} = \dfrac{{{x^2} + 4x - 5}}{{{{\left( {x + 2} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \left[ {0;3} \right]\\x = - 5 \notin \left[ {0;3} \right]\end{array} \right.\)
Hàm số đã cho liên tục trên \(\left[ {0;3} \right]\), có: \(y\left( 0 \right) = \dfrac{1}{2},y\left( 1 \right) = 0,\,y\left( 3 \right) = \dfrac{4}{5}\,\,.\)
Vậy \(\mathop {\max }\limits_{\left[ {0;3} \right]} y = y\left( 3 \right) = \dfrac{4}{5}\).
Chọn D.