Môn Toán - Lớp 12
40 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) sao cho \(\mathop {\max }\limits_{\left[ { - 1;4} \right]} f\left( x \right) = 3\). Đặt \(g\left( x \right) = f\left( {3{x^3} + 2x - 1} \right) + 2m\), \(m\) là tham số. Tìm \(m\) để \(\mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = - 7\).
- A \(m = 7\)
- B \(m = - 2\)
- C \(m = 2\)
- D \(m = - 5\)
Phương pháp giải:
- Nhận xét: Hàm số \(g\left( x \right) = f\left( {3{x^3} + 2x - 1} \right) + 2m\) đạt giá trị lớn nhất khi và chỉ khi \(f\left( {3{x^3} + 2x - 1} \right)\) đạt giá trị lớn nhất.
- Đặt ẩn phụ \(t = 3{x^3} + 2x - 1\). Tìm khoảng giá trị của \(t\).
- Dựa vào giả thiết tìm GTLN của \(f\left( {3{x^3} + 2x - 1} \right)\), từ đó suy ra GTLN của \(g\left( x \right) = f\left( {3{x^3} + 2x - 1} \right) + 2m\) theo \(m\).
- Giải phương trình GTLN của \(g\left( x \right) = f\left( {3{x^3} + 2x - 1} \right) + 2m\) = \( - 7\), tìm \(m\).
Lời giải chi tiết:
Ta có \(g\left( x \right) = f\left( {3{x^3} + 2x - 1} \right) + 2m\) đạt giá trị lớn nhất khi và chỉ khi \(f\left( {3{x^3} + 2x - 1} \right)\) đạt giá trị lớn nhất.
Đặt \(t = 3{x^3} + 2x - 1\) ta có: \(t'\left( x \right) = 9{x^2} + 2 > 0\,\,\forall x \in \mathbb{R}\), do đó hàm số đồng biến trên \(\mathbb{R}\).
\( \Rightarrow \) Với \(x \in \left[ {0;1} \right] \Rightarrow t \in \left[ { - 1;4} \right]\)\( \Rightarrow \mathop {\max }\limits_{\left[ {0;1} \right]} f\left( {3{x^3} + 2x - 1} \right) = \mathop {\max }\limits_{\left[ { - 1;4} \right]} f\left( t \right) = 3\).
Vậy \(\mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = 3 + 2m = - 7 \Leftrightarrow m = - 5\).
Chọn D.