Môn Toán - Lớp 12
30 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ thông hiểu
Câu hỏi
Giá trị nhỏ nhất của hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) trên đoạn \(\left[ {0;\,\,3} \right]\) bằng:
- A \(\mathop {\min }\limits_{\left[ {0;\,\,3} \right]} y = - 1\)
- B \(\mathop {\min }\limits_{\left[ {0;\,\,3} \right]} y = 1\)
- C \(\mathop {\min }\limits_{\left[ {0;\,\,3} \right]} y = \dfrac{1}{2}\)
- D \(\mathop {\min }\limits_{\left[ {0;\,\,3} \right]} y = - 3\)
Phương pháp giải:
Hàm số \(y = f\left( x \right)\) đồng biến trên \(\left[ {a;\,\,b} \right]\,\,\,\left( {a < b} \right)\) thì \(\mathop {Min}\limits_{\left[ {a;\,\,b} \right]} f\left( x \right) = f\left( a \right).\)
Hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left[ {a;\,\,b} \right]\,\,\,\left( {a < b} \right)\) thì \(\mathop {Min}\limits_{\left[ {a;\,\,b} \right]} f\left( x \right) = f\left( b \right).\)
Lời giải chi tiết:
Xét hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) trên đoạn \(\left[ {0;\,\,3} \right]\) ta có:
\(y' = \dfrac{{1 + 1}}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{2}{{{{\left( {x + 1} \right)}^2}}} > 0\,\,\forall x \in \left[ {0;\,\,3} \right]\)
\( \Rightarrow \) Hàm số đã cho đồng biến trên \(\left[ {0;\,\,3} \right].\)
\( \Rightarrow \mathop {Min}\limits_{\left[ {0;\,\,3} \right]} \dfrac{{x - 1}}{{x + 1}} = y\left( 0 \right) = - 1.\)
Vậy \(\mathop {\min }\limits_{\left[ {0;\,\,3} \right]} y = - 1.\)
Chọn A.