Câu hỏi

Cho hàm số \(f\left( x \right) = {x^3} + \left( {{m^2} + 1} \right)x + {m^2} - 2\) với \(m\) là tham số thực. Tìm tất cả các giá trị của \(m\) để hàm số có giá trị nhỏ nhất trên đoạn \(\left[ {0;\,\,2} \right]\) bằng \(7.\)

  • A \(m =  \pm 1\)
  • B \(m =  \pm \sqrt 7 \)
  • C \(m =  \pm \sqrt 2 \)
  • D \(m =  \pm 3\)

Phương pháp giải:

Xét hàm số \(f\left( x \right) = {x^3} + \left( {{m^2} + 1} \right)x + {m^2} - 2\) trên \(\left[ {0;\,\,2} \right]\) ta có: \(f'\left( x \right) = 3{x^2} + {m^2} + 1 > 0\,\,\,\forall m\)

\( \Rightarrow \) Hàm số đống biến trên \(\mathbb{R}\)   \( \Rightarrow \mathop {Min}\limits_{\left[ {0;\,\,2} \right]} f\left( x \right) = f\left( 0 \right) = 7\)

Lời giải chi tiết:

Xét hàm số \(f\left( x \right) = {x^3} + \left( {{m^2} + 1} \right)x + {m^2} - 2\) trên \(\left[ {0;\,\,2} \right]\) ta có: \(f'\left( x \right) = 3{x^2} + {m^2} + 1 > 0\,\,\,\forall m\)

\( \Rightarrow \) Hàm số đống biến trên \(\mathbb{R}.\)

\(\begin{array}{l} \Rightarrow \mathop {Min}\limits_{\left[ {0;\,\,2} \right]} f\left( x \right) = f\left( 0 \right) = 7\\ \Leftrightarrow {m^2} - 2 = 7\\ \Leftrightarrow {m^2} = 9\\ \Leftrightarrow m =  \pm 3.\end{array}\)  

Chọn D. 


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay