Câu hỏi

Gọi S là tập tất cả các giá trị nguyên của tham số thực \(m\) sao cho giá trị lớn nhất của hàm số \(y = \left| {\dfrac{1}{4}{x^4} - 14{x^2} + 48x + m} \right|\) trên đoạn \(\left[ {2;4} \right]\) không vượt quá \(30\). Số phần tử của \(S\) là

  • A \(50\)
  • B \(49\)
  • C \(66\)
  • D \(73\)

Phương pháp giải:

Xét hàm số \(f\left( x \right) = \dfrac{1}{4}{x^4} - 14{x^2} + 48x + m\) trên đoạn [2; 4]

Biện luận tìm GTLN của \(\left| {f\left( x \right)} \right|\) trên đoạn [2; 4].

Cho GTLN của hàm số \(\left| {f\left( x \right)} \right|\) nhỏ hơn hoặc bằng 30 tìm m và kết luận.

Lời giải chi tiết:

Xét hàm số \(f\left( x \right) = \dfrac{1}{4}{x^4} - 14{x^2} + 48x + m\) trên đoạn [2; 4] ta có:

\(f'\left( x \right) = {x^3} - 28x + 48\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 6\\x = 2\\x = 4\end{array} \right.\)

Ta thấy \(f'\left( x \right) < 0,\forall x \in \left( {2;4} \right)\) nên hàm số nghịch biến trên \(\left( {2;4} \right)\).

\(f\left( 2 \right) = 44 + m\) và \(f\left( 4 \right) = 32 + m\)

+) TH1: \(32 + m \ge 0 \Leftrightarrow m \ge  - 32\) thì \(\mathop {\max }\limits_{\left[ {2;4} \right]} \left| {f\left( x \right)} \right| = f\left( 2 \right) = 44 + m\)

Khi đó \(44 + m \le 30 \Leftrightarrow m \le  - 14\).

Kết hợp với \(m \ge  - 32\) ta được \( - 32 \le m \le  - 14\) (1)

+) TH2: \(32 + m < 0 < 44 + m\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}32 + m < 0\\0 < 44 + m\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m <  - 32\\m >  - 44\end{array} \right.\\ \Leftrightarrow  - 44 < m <  - 32\end{array}\)

Khi đó \(\mathop {\max }\limits_{\left[ {2;4} \right]} \left| {f\left( x \right)} \right|\)\( = \max \left\{ {44 + m; - 32 - m} \right\}\)

\( \Rightarrow \mathop {\max }\limits_{\left[ {2;4} \right]} \left| {f\left( x \right)} \right| \le 30\)\( \Leftrightarrow \left[ \begin{array}{l}44 + m \le 30\\ - 32 - m \le 30\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m \le  - 14\\m \ge  - 62\end{array} \right.\)

Kết hợp với \( - 44 < m <  - 32\) ta được \( - 44 < m <  - 32\) (2)

+) TH3: \(44 + m \le 0 \Leftrightarrow m \le  - 44\)

Khi đó \(\mathop {\max }\limits_{\left[ {2;4} \right]} \left| {f\left( x \right)} \right| =  - 32 - m\)

\( \Rightarrow \mathop {\max }\limits_{\left[ {2;4} \right]} \left| {f\left( x \right)} \right| \le 30\)\( \Leftrightarrow  - 32 - m \le 30 \Leftrightarrow m \ge  - 62\)

Kết hợp với \(m \le  - 44\) ta được \( - 62 \le m \le  - 44\) (3)

Từ (1) (2) và (3) suy ra \( - 62 \le m \le  - 14\).

Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ { - 62; - 61;...; - 15; - 14} \right\}\).

Vậy có \( - 14 - \left( { - 62} \right) + 1 = 49\) giá trị.

Chọn B.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay