Câu hỏi

Gọi \(S\) là tập hợp các số tự nhiên có 4 chữ số khác nhau. Chọn ngẫu nhiên một số từ tập \(S\). Tìm xác suất để số được chọn có các chữ số sắp xếp theo thứ tự tăng dần và không chứa hai chữ số nguyên nào liên tiếp nhau.

  • A \(\dfrac{1}{{36}}\)
  • B \(\dfrac{2}{3}\)
  • C \(\dfrac{5}{{63}}\)
  • D \(\dfrac{5}{{1512}}\)

Phương pháp giải:

- Gọi số tự nhiên có 4 chữ số khác nhau là \(\overline {abcd} \,\,\left( {a \ne 0,\,\,a,b,c,d \in \mathbb{N},\,\,0 \le a,b,c,d \le 9} \right)\). Tính số phần tử của không gian mẫu.

- Gọi A là biến cố: “Số được chọn có các chữ số sắp xếp theo thứ tự tăng dần và không chứa hai chữ số nguyên nào liên tiếp nhau” \( \Rightarrow 1 \le a < b < c < d \le 9\).

- Từ yêu cầu bài toán, suy ra được điều kiện \(1 \le a < b - 1 < c - 2 < d - 3 \le 6\), chọn cặp các chữ số \(\left( {a;b - 1;c - 2;d - 3} \right)\) thỏa mãn điều kiện trên, từ đó tính được \(n\left( A \right)\).

- Tính xác suất của biến cố A: \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết:

Gọi số tự nhiên có 4 chữ số khác nhau là \(\overline {abcd} \,\,\left( {a \ne 0,\,\,a,b,c,d \in \mathbb{N},\,\,0 \le a,b,c,d \le 9} \right)\).

- Số cách chọn \(a\): 9 cách \(\left( {a \ne 0} \right)\).

- Số cách chọn \(b,\,\,c,\,\,d\): \(A_9^3 = 504\) cách.

\( \Rightarrow \) Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 9.504 = 4536\).

Gọi A là biến cố: “Số được chọn có các chữ số sắp xếp theo thứ tự tăng dần và không chứa hai chữ số nguyên nào liên tiếp nhau”.

\( \Rightarrow 1 \le a < b < c < d \le 9\).

Vì các số \(a,\,\,b,\,\,c,\,\,d\) không có hai số nào là hai số nguyên liên tiếp nên ta có:

\(\left\{ \begin{array}{l}b > a + 1\\c > b + 1\\d > c + 1\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}a < b - 1\\b < c - 1 \Rightarrow b - 1 < c - 2\\c < d - 1 \Rightarrow c - 2 < d - 3\end{array} \right.\).

Khi đó ta có \(1 \le a < b - 1 < c - 2 < d - 3 \le 6\).

Số cách chọn được 1 bộ số \(\left( {a;b - 1;c - 2;d - 3} \right)\) là \(C_6^4 = 15\) cách. Ứng với mỗi cách chọn 1 bộ số \(\left( {a;b - 1;c - 2;d - 3} \right)\) ta được 1 bộ số \(\left( {a;b;c;d} \right)\) thỏa mãn yêu cầu bài toán \( \Rightarrow n\left( A \right) = 15\).

Vậy xác suất của biến cố A là \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \dfrac{{15}}{{4536}} = \dfrac{5}{{1512}}\).

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay