Câu hỏi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như hình bên. Số điểm cực trị của hàm số đã cho là:

  • A \(1\)
  • B \(2\)
  • C \(4\)
  • D \(3\)

Phương pháp giải:

Ta có: \(x = {x_0}\) là điểm cực trị của hàm số \(y = f\left( x \right) \Leftrightarrow \) tại điểm \(x = {x_0}\) thì hàm số có \(y'\)  đổi dấu từ dương sang âm hoặc ngược lại.

Hay số điểm cực trị của hàm số là số lần đổi dấu của \(f'\left( x \right).\)

Lời giải chi tiết:

Dựa vào bảng xét dấu ta thấy \(f'\left( x \right)\) đổi dấu qua \(x =  - 1,\,\,\,x = 0\) và \(x = 2\) nên hàm số có 3 điểm cực trị.

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay