Môn Toán - Lớp 12
40 bài tập trắc nghiệm giá trị lớn nhất, giá trị nhỏ nhất của hàm số mức độ vận dụng, vận dụng cao
Câu hỏi
Tìm giá trị nhỏ nhất của hàm số \(y = x + \dfrac{{16}}{{\sqrt x }}.\)
- A \(8\)
- B \(3\sqrt 8 \)
- C \(16\)
- D \(12\)
Phương pháp giải:
Cách 1:
+) Tìm GTLN và GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;\;b} \right]\) bằng cách:
+) Giải phương trình \(y' = 0\) tìm các nghiệm \({x_i}.\)
+) Tính các giá trị \(f\left( a \right),\;f\left( b \right),\;\;f\left( {{x_i}} \right)\;\;\left( {{x_i} \in \left[ {a;\;b} \right]} \right).\) Khi đó:
\(\mathop {\min }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \min \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\},\;\;\mathop {\max }\limits_{\left[ {a;\;b} \right]} f\left( x \right) = \max \left\{ {f\left( a \right);\;f\left( b \right);\;f\left( {{x_i}} \right)} \right\}.\)
Cách 2: Sử dụng chức năng MODE 7 để tìm GTLN, GTNN của hàm số trên \(\left[ {a;\;b} \right].\)
Lời giải chi tiết:
Xét hàm số \(y = x + \dfrac{{16}}{{\sqrt x }}\) ta có:
TXĐ: \(D = \left( {0; + \infty } \right).\)
\(\begin{array}{l}y' = 1 - \dfrac{{16.\dfrac{1}{{2\sqrt x }}}}{{\sqrt x }} = 1 - \dfrac{8}{{x\sqrt x }} = \dfrac{{x\sqrt x - 8}}{{x\sqrt x }}\\ \Rightarrow y' = 0 \Leftrightarrow x\sqrt x - 8 = 0 \Leftrightarrow x\sqrt x = 8\\ \Leftrightarrow {\left( {\sqrt x } \right)^3} = {2^3} \Leftrightarrow \sqrt x = 2 \Leftrightarrow x = 4\,\,\left( {tm} \right)\end{array}\)
Ta có bảng xét dấu:
\( \Rightarrow \mathop {Min}\limits_{\left( {0; + \infty } \right)} y = 12\) khi \(x = 4.\)
Chọn D.