Câu hỏi

Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^3} - x\) và đồ thị hàm số \(y = x - {x^2}\).

  • A \(S = \dfrac{{81}}{{12}}\)
  • B \(S = 13\)
  • C \(S = \dfrac{9}{4}\)
  • D \(S = \dfrac{{37}}{{12}}\)

Phương pháp giải:

- Giải phương trình hoành độ giao điểm.

- Cho hàm số \(f\left( x \right)\)liên tục \(\left[ {a;b} \right]\), diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\),\(y = g\left( x \right)\), các đường thẳng \(x = a,\,\,x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} .\)

Lời giải chi tiết:

Xét phương trình hoành độ giao điểm: \({x^3} - x = x - {x^2} \Leftrightarrow {x^3} + {x^2} - 2x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x =  - 2\end{array} \right.\)

Diện tích hình phẳng giới hạn bởi đồ thị hai hàm số \(y = {x^3} - x\) và \(y = x - {x^2}\) là

\(\begin{array}{l}S = \int\limits_{ - 2}^1 {\left| {{x^3} + {x^2} - 2x} \right|dx} \\\,\,\,\,\, = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} + {x^2} - 2x} \right)dx} } \right| + \left| {\int\limits_0^1 {\left( {{x^3} + {x^2} - 2x} \right)dx} } \right|\\\,\,\,\,\,\, = \dfrac{8}{3} + \dfrac{5}{{12}} = \dfrac{{37}}{{12}}.\end{array}\)

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay