Câu hỏi
Trong không gian Oxyz, cho điểm \(A\left( {1; - 4; - 3} \right)\) và \(\overrightarrow n = \left( { - 2;5;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm A và nhận \(\overrightarrow n \) làm vecto pháp tuyến là
- A \( - 2x + 5y + 2z - 28 = 0\)
- B \(x - 4y - 3z + 28 = 0\)
- C \(x - 4y - 3z - 28 = 0\)
- D \( - 2x + 5y + 2z + 28 = 0\)
Phương pháp giải:
Viết phương trình mặt phẳng đi qua \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT là \(\overrightarrow n \left( {A;B;C} \right)\) là:
\(A\left( {x - {x_0}} \right) + \left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).
Lời giải chi tiết:
Mặt phẳng \(\left( P \right)\) đi qua \(A\left( {1; - 4; - 3} \right)\) và có vecto pháp tuyến là \(\overrightarrow n = \left( { - 2;5;2} \right)\) nên phương trình mặt phẳng \(\left( P \right)\) là \( - 2\left( {x - 1} \right) + 5\left( {y + 4} \right) + 2\left( {z + 3} \right) = 0\)\( \Leftrightarrow - 2x + 5y + 2z + 28 = 0.\)
Chọn D.