Câu hỏi
Cho hàm số\(y = f\left( x \right) = - \dfrac{1}{4}{x^4} + 2{x^2} - 1\,\,\left( C \right)\). Từ điểm \(A\left( {0; - 1} \right)\) có thể kẻ được tất cả bao nhiêu tiếp tuyến đến đường cong \(\left( C \right)\).
- A \(3\)
- B \(4\)
- C \(2\)
- D \(1\)
Phương pháp giải:
+ \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\)là tiếp điểm và \(\Delta \)là tiếp tuyến tại \(M\).
+ Phương trình tiếp tuyến tại\(M\)có dạng: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\)
+ Do \(\Delta \)đi qua \(A\left( {0; - 1} \right)\)nên thay tọa độ điểm \(A\) vào phương trình tìm \({x_0}\).
+ Thay ngược lại \({x_0}\) tìm phương trình tiếp tuyến.
Lời giải chi tiết:
+ \(M\left( {{x_0};{y_0}} \right) \in \left( C \right)\)là tiếp điểm và \(\Delta \)là tiếp tuyến tại \(M\).
+ Ta có:\(k = f'\left( {{x_0}} \right) = - x_0^3 + 4{x_0}\)
+ Phương trình tiếp tuyến tại\(M\)có dạng:
\(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\) \( \Leftrightarrow y = \left( { - x_0^3 + 4{x_0}} \right)\left( {x - {x_0}} \right) - \dfrac{1}{4}x_0^4 + 2x_0^2 - 1\,\,\left( \Delta \right)\)
+ Do \(\Delta \)đi qua \(A\left( {0; - 1} \right)\)nên:
\(\begin{array}{l} \Leftrightarrow - 1 = \left( { - x_0^3 + 4{x_0}} \right)\left( { - {x_0}} \right) - \dfrac{1}{4}x_0^4 + 2x_0^2 - 1\\ \Leftrightarrow x_0^4 - 4x_0^2 - \dfrac{1}{4}x_0^4 + 2x_0^2 = 0\\ \Leftrightarrow \dfrac{3}{4}x_0^4 - 2x_0^2 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = \dfrac{{2\sqrt 6 }}{3}\\{x_0} = - \dfrac{{2\sqrt 6 }}{3}\end{array} \right.\end{array}\)
+ Với \({x_0} = 0\) thì \(\left( \Delta \right):\,\,y = - 1\).
+ Với \({x_0} = \dfrac{{2\sqrt 6 }}{3}\) thì \(\left( \Delta \right):\,\,y = \dfrac{{8\sqrt 6 }}{9}\left( {x - \dfrac{{2\sqrt 6 }}{3}} \right) + \dfrac{{23}}{9}\)\( \Leftrightarrow y = \dfrac{{8\sqrt 6 }}{9}x - \dfrac{{41}}{9}\).
+ Với \({x_0} = - \dfrac{{2\sqrt 6 }}{3}\) thì \(\left( \Delta \right):\,\,y = - \dfrac{{8\sqrt 6 }}{9}\left( {x - \dfrac{{2\sqrt 6 }}{3}} \right) + \dfrac{{23}}{9}\)\( \Leftrightarrow y = - \dfrac{{8\sqrt 6 }}{9}x + \dfrac{{55}}{9}\).
Vậy có ba tiếp tuyến thỏa mãn là: \(y = - 1\), \(y = \dfrac{{8\sqrt 6 }}{9}x - \dfrac{{41}}{9}\), \(y = - \dfrac{{8\sqrt 6 }}{9}x + \dfrac{{55}}{9}\).
Chọn A.