Câu hỏi
Cho đường tròn \(\left( C \right):\,\,\,{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 10.\) Có bao nhiêu tiếp tuyến của đường tròn \(\left( C \right)\) biết tiếp tuyến tạo với đường thẳng \(d:\,\,\,2x + y - 4 = 0\) một góc \({45^0}.\)
- A \(4\)
- B \(3\)
- C \(2\)
- D \(1\)
Phương pháp giải:
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 1} \right)\) và bán kính \(R = \sqrt {10} .\)
Giả sử tiếp tuyến \(\Delta :\,\,\,ax + by + c = 0\,\,\,\left( {{a^2} + {b^2} \ne 0} \right).\)
\(\Delta \) là tiếp tuyến của \(\left( C \right) \Rightarrow d\left( {I;\,\,\Delta } \right) = R = \sqrt {10} .\)
Theo đề bài ta có: \(\Delta \) tạo với \(d\) một góc \({45^0} \Rightarrow \cos {45^0} = \frac{{\left| {\overrightarrow {{n_\Delta }} .\overrightarrow {{n_d}} } \right|}}{{\left| {\overrightarrow {{n_\Delta }} } \right|.\left| {\overrightarrow {{n_d}} } \right|}}.\)
Giải phương trình để từ đó lập phương trình đường thẳng \(\Delta .\)
Lời giải chi tiết:
Ta có: \(\overrightarrow {{n_d}} = \left( {2;\,\,1} \right).\)
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 1} \right)\) và bán kính \(R = \sqrt {10} .\)
Giả sử tiếp tuyến \(\Delta :\,\,\,ax + by + c = 0\,\,\,\left( {{a^2} + {b^2} \ne 0} \right) \Rightarrow \overrightarrow {{n_\Delta }} = \left( {a;\,\,b} \right).\)
\(\Delta \) là tiếp tuyến của \(\left( C \right) \Rightarrow d\left( {I;\,\,\Delta } \right) = R = \sqrt {10} .\)
\( \Leftrightarrow \frac{{\left| {a - b + c} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \sqrt {10} \Leftrightarrow \left| {a - b + c} \right| = \sqrt {10\left( {{a^2} + {b^2}} \right)} \,\,\,\,\left( 1 \right)\)
Theo đề bài ta có: \(\Delta \) tạo với \(d\) một góc \({45^0} \Rightarrow \cos {45^0} = \frac{{\left| {\overrightarrow {{n_\Delta }} .\overrightarrow {{n_d}} } \right|}}{{\left| {\overrightarrow {{n_\Delta }} } \right|.\left| {\overrightarrow {{n_d}} } \right|}}\)
\(\begin{array}{l} \Leftrightarrow \frac{{\left| {2a + b} \right|}}{{\sqrt {{2^2} + 1} .\sqrt {{a^2} + {b^2}} }} = \frac{{\sqrt 2 }}{2}\\ \Leftrightarrow 2\left| {2a + b} \right| = \sqrt {10} .\sqrt {{a^2} + {b^2}} \Leftrightarrow 4{\left( {2a + b} \right)^2} = 10\left( {{a^2} + {b^2}} \right)\\ \Leftrightarrow 6{a^2} + 16ab - 6{b^2} = 0 \Leftrightarrow 3{a^2} + 8ab - 3{b^2} = 0\\ \Leftrightarrow \left( {a + 3b} \right)\left( {3a - b} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}a + 3b = 0\\3a - b = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = - 3b\\a = \frac{b}{3}\end{array} \right.\end{array}\)
+) Với \(a = - 3b \Rightarrow \left( 1 \right) \Leftrightarrow \left| { - 3b - b + c} \right| = \sqrt {10\left( {9{b^2} + {b^2}} \right)} \)
\(\begin{array}{l} \Leftrightarrow \left| {c - 4b} \right| = \sqrt {100{b^2}} \Leftrightarrow \left| {c - 4b} \right| = 10\left| b \right|\\ \Leftrightarrow \left[ \begin{array}{l}c - 4b = 10b\\c - 4b = - 10b\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 14b\\c = - 6b\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a = - 3b\\c = 14b\end{array} \right. \Rightarrow {\Delta _1}:\,\,\, - 3x + y + 14 = 0\\\left\{ \begin{array}{l}a = - 3b\\c = - 6b\end{array} \right. \Rightarrow {\Delta _2}:\,\, - 3x + y - 6 = 0\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}{\Delta _1}:\,\,\,3x - y - 14 = 0\\{\Delta _2}:\,\,3x - y + 6 = 0\end{array} \right..\end{array}\)
+) Với \(a = \frac{b}{3} \Rightarrow \left( 1 \right) \Leftrightarrow \left| {\frac{b}{3} - b + c} \right| = \sqrt {10\left( {\frac{{{b^2}}}{9} + {b^2}} \right)} \)
\(\begin{array}{l} \Leftrightarrow \left| {c - \frac{{2b}}{3}} \right| = \sqrt {\frac{{100{b^2}}}{9}} \Leftrightarrow \left| {c - \frac{{2b}}{3}} \right| = \frac{{10}}{3}\left| b \right|\\ \Leftrightarrow \left[ \begin{array}{l}c - \frac{{2b}}{3} = \frac{{10b}}{3}\\c - \frac{{2b}}{3} = - \frac{{10b}}{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}c = 4b\\c = - \frac{8}{3}b\end{array} \right.\end{array}\)
\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a = \frac{b}{3}\\c = 4b\end{array} \right. \Rightarrow {\Delta _3}:\,\,\,\frac{1}{3}x + y + 4 = 0\\\left\{ \begin{array}{l}a = \frac{b}{3}\\c = - \frac{{8b}}{3}\end{array} \right. \Rightarrow {\Delta _4}:\,\,\frac{1}{3}x + y - \frac{8}{3} = 0\end{array} \right.\)
\( \Rightarrow \left[ \begin{array}{l}{\Delta _3}:\,\,\,x + 3y + 12 = 0\\{\Delta _4}:\,\,x + 3y - 8 = 0\end{array} \right..\)
Như vậy có 4 tiếp tuyến thỏa mãn bài toán.
Chọn A.