Câu hỏi

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ. Gọi \(M\) và \(m\) tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = f\left( {1 - 2\cos x} \right)\) trên \(\left[ {0;\,\,\dfrac{{3\pi }}{2}} \right]\). Giá trị của \(M + m\) bằng

  • A \(\dfrac{1}{2}\)
  • B \(\dfrac{3}{2}\)
  • C \(1\)
  • D \(2\)

Phương pháp giải:

- Đặt \(t = 1 - 2\cos x\), tìm khoảng giá trị của \(t\).

- Quan sát đồ thị hàm số, tìm \(M,\,\,m\).

Lời giải chi tiết:

Đặt \(t = 1 - 2\cos x\). Với \(x \in \left[ {0;\,\,\dfrac{{3\pi }}{2}} \right]\) thì \(\cos x \in \left[ { - 1;1} \right] \Rightarrow \)\(1 - 2\cos x \in \left[ { - 1;3} \right] \Rightarrow t \in \left[ { - 1;3} \right].\)

Khi đó ta có \(y = f\left( t \right)\) với \(t \in \left[ { - 1;3} \right]\).

Quan sát đồ thị hàm số \(y = f\left( t \right)\) trên đoạn \(\left[ { - 1;3} \right]\), ta thấy GTLN của hàm số là 2, GTNN của hàm số là \( - \dfrac{3}{2}\)

\( \Rightarrow M = 2,\,\,m =  - \dfrac{3}{2} \Rightarrow M + m = \dfrac{1}{2}\)

Chọn: A


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay