Câu hỏi

Gieo một con xúc xắc cân đối đồng chất \(2\) lần. Tính xác suất để tổng số chấm xuất hiện trong hai lần gieo bằng \(8.\)

  • A \(\dfrac{1}{6}.\)
  • B \(\dfrac{1}{2}.\)
  • C \(\dfrac{5}{{36}}.\)
  • D \(\dfrac{1}{9}.\)

Phương pháp giải:

- Tính số phần tử của không gian mẫu.

- Liệt kê các khả năng có lợi cho biến cố.

- Tính xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết:

Gieo con xúc sắc hai lần, \(n\left( \Omega  \right) = 6.6 = 36\).

Gọi \(A\) là biến cố: “Tổng số chấm xuất hiện trong hai lần gieo bằng \(8\)”

Khi đó \(A = \left\{ {\left( {2;6} \right),\left( {3;5} \right),\left( {4;4} \right),\left( {5;3} \right),\left( {6;2} \right)} \right\}\) \( \Rightarrow n\left( A \right) = 5\)

Xác suất \(P\left( A \right) = \dfrac{5}{{36}}\).

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay